K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Biểu thức này bằng 0 hay bằng bao nhiêu vậy bạn?????????

30 tháng 6 2018

\(x^4+4x^3+12\)

\(=\left(x^2\right)^2+2.2x^3+\left(2x\right)^2-4x^2+12\)

\(=\left(x^2+2x\right)^2-4x^2+12\)

Có \(\left(x^2+2x\right)^2-4x^2+12>0\)

=> Vô nghiệm

8 tháng 5 2021

x4+2x2+1 

Ta có :

x4 ≥ 0 ∀ x

x2 ≥ 0 ∀ x => 2x≥ 0 ∀ x

=> x4+2x2+1  ≥ 1 >0

Suy ra đa thức trên vô nghiệm

5 tháng 5 2017

Ta có M(x) = x4 + 9/2 . x+ 2/2 . x2 + x + 6 ( tách 11/2 . x2)

        => M(x) = x4 + 9/2.x2 + x2 + x + 6

Ta xét x2 + x + 6

          = x2 + 1/2.x + 1/2.x + 1/4 + 23/4 (tách x và tách 6)

          = x(x + 1/2) + 1/2(x + 1/2) + 23/4 (phân phối)

          = (x + 1/2).(x + 1/2) + 23/4 (phân phối tiếp)

          = (x + 1/2)2 + 23/4

 Ghép kết quả trên vào M(x) ta đc: 

M(x)= x4 + 9/2.x2 + (x + 1/2)2 + 23/4

 Vì x4 >= 0, mọi x

     9/2.x2 >= 0, mọi x.      

     (x + 1/2)2 >= 0, mọi x

 Suy ra x4 + 9/2.x2 + (x + 1/2)2 >= 0, mọi x

 Suy ra x4 + 9/2.x2 + (x + 1/2)2 + 23/4 > 0, mọi x

 Vậy đa thức M(x) vô nghiệm

ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé

_Hết_

   

28 tháng 5 2020

Giải:

Tập xác định của phương trình

              x\(\varepsilon\)   (\(\infty\);\(\infty\)

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

8 tháng 8 2021

Cho mình xin đáp án câu a và b được không?

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Bạn vui lòng gõ lại biểu thức $P(x)$ để được hỗ trợ tốt hơn.

 

1 tháng 8 2023

Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)

                                              hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

 

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b =  -3; c = m và a' = 2; b' = - 6; c' = 8

Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\)  \(\ne\) \(\dfrac{m}{8}\)

                            ⇔  \(\dfrac{1}{2}\)            \(\ne\) \(\dfrac{m}{8}\)

                           ⇔   m \(\ne\) 4

Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4

Kết luận:

+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4

1 tháng 8 2023

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)

\(D=-6+6=0\)

\(D_x=-6m+24\)

\(D_y=8-2m\)

Để hệ phương trình vô nghiệm

\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)

\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)

\(\Leftrightarrow m\ne4\)

Để hệ phương trình vô số nghiệm

\(\Leftrightarrow D=D_x=D_y=0\)

\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)

2 tháng 8 2023

em mới lên lớp 7 nên chưa giải đc

2 tháng 8 2023

e k b lm

25 tháng 1 2016

x4+(12m)x2+m21(1)

Đặt t=x2(t\(\ge\) 0) ta được:

t2+(1-2m)t+m2-1(2)

a)Để PT vô nghiệm thì: 

\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)

<=>1-4m+4m2-4m2+4<0

<=>5-4m<0

<=>m>5/4

 

26 tháng 1 2016

Đặt t = x2(t\(\ge\) 0 ) ta được :

t2 + ( 1 - 2m)t + m2 - 1(2) 

a) Để PT vô nghiệm thì :

\(\Delta\)\(=\left(1-2m\right)^2\) \(-4.1\left(m^2-1\right)\) \(<\)0

<=> 1 - 4m+4m2 - 4m2+4<0

<=>5-4m<0

<=>m>5/4