K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

26 tháng 1 2021

Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2) 

\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)

Thay lại vào (1) ; (2) ta có : 

\(\Leftrightarrow a=11-b=11-7=4\)

\(\Leftrightarrow c=3-b=3-7=-4\)

Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện ) 

26 tháng 1 2021
a a + b + b + c + a + c = 11 + 3 + 2 2a + 2b + 2c = 16 a + b + c = 8 Mà a + b = 11 Suy ra c = - 3 b + c = 3 Vậy b = 6 c + a = 2 a = 5 Vậy a = 5 ; b = 6 ; c = -3 b a + b + c + a + b + d + a + c + d = 4 + 3 + 2 a + 2a + 2b + 2c + 2d = 9 Mà a + b + c + d = 1 Suy ra a + 2 = 9 a = 7 a + c + d = 2 c + d = -5 a + b + d = 3 b + d = -4 a + b + c = 4 b + c = -3 b + c + c + d + d + b = -5 + -4 + -3 2b + 2c + 2d = -12 b + c + d = -6 b + c = -3 d = -3 c + d = -5 c = -2 b + d = -4 b = -1 Vậy a = 7 ; b = -1 ; c = -2 ; d = -3
7 tháng 8 2015

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{2}=\frac{a}{3}=\frac{2b}{8}=\frac{3c}{6}=\frac{a-2b+3c}{3-8+6}=\frac{35}{1}=35\)

=>a/3=35=>a=35.3=105

    b/4=35=>b=35.4=140

    c/2=35=>c=35.2=70

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)

\( \Rightarrow a=2.5=10;\\b=2.2=4\)

Vậy \(a = 10 ; b = 4\)

b) Vì a : b : c = 2 : 4 : 5

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)

\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)

Vậy \(a=6;b=12;c=15\).

26 tháng 8 2023

a/

Nếu \(a\ge1\) => vế trái có tận cùng là 8 mà vế phải là 1 số chính phương.

Một số chính phương chỉ có tận cùng là 0;1;4;6;9

=> a=0

\(\Rightarrow5^0+323=b^2\Leftrightarrow18^2=b^2\Rightarrow b=18\)

b/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(7^b\) chỉ có tận cùng là 1;3;7;9 là 1 số lẻ

\(\Rightarrow a=0\)

\(\Leftrightarrow2^0+342=7^b\Leftrightarrow7^3=7^b\Rightarrow b=3\)

c/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(3^b\)  là 1 số lẻ => a=0

\(\Leftrightarrow2^0+80=3^b\Leftrightarrow3^4=3^b\Rightarrow b=4\)

d/

Nếu \(a\ge1\) => vế trái là 1 số lẻ mà VP là 1 số chẵn => a=0

\(\Leftrightarrow35^0+9=2.5^b\Rightarrow10=2.5^b\Leftrightarrow5^b=5\Rightarrow b=1\)