một cửa hàng có ba tấm vải dài tổng cộng 108 m.Sau khi bán 1/2 tấm vải thứ nhất,2/3 tấm vải thứ hai,3/4 tấm vải thứ ba, thì số mét vải của ba tấm bằng nhau.Tính chiều dài của ba tấm vải lúc đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 tấm vải ban đầu có độ dài lần lượt là x , y , z
x+y +z = 108
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-1/2).x = 1/2.x
sau đi bán 2/3 tấm vải một vậy tấm vải 1 còn lại ( 1-2/3).y = 1/3.y
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-3/4).z = 1/4.z
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{y}=\frac{x+y+z}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow x=24\)
\(\Rightarrow y=36\)
\(\Rightarrow z=48\)
Vậy ba tấm vải có chiều dài lần lượt là 24 m , y = 36 m , z = 48 m
Gọi chiều dài ban đầu của tấm vải thứ nhất, thứ hai vaf thứ 3 lần lượt là a, b và c (a, b, c \(\in\) N)
Theo bài ra: Cắt tấm vải thứ nhất đi \(\frac{1}{2}\) thì còn lại là: \(1-\frac{1}{2}=\frac{1}{2}\)
Cắt tấm vải thứ hai đi \(\frac{2}{3}\) thì còn lại là: \(1-\frac{2}{3}=\frac{1}{3}\)
Cắt tấm vải thứ ba đi \(\frac{3}{4}\) thì còn lại là: \(1-\frac{3}{4}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\) \(BCNN\left(1;1;1\right)=1\)
\(\frac{1a}{2.1}=\frac{1b}{3.1}=\frac{1c}{4.1}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
Tấm vải thứ nhất dài là: \(\frac{a}{2}=12\Rightarrow a=24\) (m)
Tấm vải thứ hai dài là: \(\frac{b}{3}=12\Rightarrow b=36\) (m)
Tấm thứ ba dài là: \(\frac{c}{4}=12\Rightarrow c=48\) (m)
Đáp số: Tấm vải thứ nhất: 24 m
Tấm vải thứ 2: 36 m
Tấm vải thứ 3: 48 m
Số vải tấm thứ nhất còn lại
1-2/3=1/3 tấm thứ nhất
Số vải tấm thứ hai còn lại
1-3/4=1/4 tấm thứ hai
Số vải tấm thứ nhất còn lại
1-4/5=1/5 tấm thứ 3
Theo đề bài 1/3 tấm thứ nhất = 1/4 tấm thứ hai = 1/5 tấm thứ 3
=> tấm thứ nhất : Tấm thứ hai : tấm thứ ba = 3:4:5
Chiều dài tấm 1 = 132:(3+4+5)x3=33 m
Chiều dài tấm 2 = 132:(3+4+5)x4=44 m
Chiều dài tấm 3 = 132:(3+4+5)x5=55 m
Gọi chiều dài tấm vải thứ nhất, thứ hai, thứ ba lần lượt là a;b;c (m) (a,b,c>0)
Theo đề ra ta có: \(a-\frac{2}{3}a=b-\frac{3}{4}b=c-\frac{4}{5}c\)
\(\Rightarrow\frac{1}{3}a=\frac{1}{4}b=\frac{1}{5}c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Vì 3 tấm dài tổng cộng 132 m \(\Rightarrow a+b+c=132\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{132}{12}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\cdot3=33\\b=11\cdot4=44\\c=11\cdot5=55\end{cases}}\)
Vậy: tấm thứ nhất dài 33m; tấm thứ hai dài 44m; tấm thứ ba dài 55m.
Với một bài toán lớp 7 bạn nên làm tính chất dãy tỉ số bằng nhau nhé Minh! ^_^
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Phân số chỉ số phần tấm vải thứ nhất còn lại là:
\(1-\frac{2}{5}=\frac{3}{5}\)
Phân số chỉ số phần tấm vải thứ hai còn lại là:
\(1-\frac{4}{7}=\frac{3}{7}\)
Phân số chỉ số phần tấm vải thứ ba còn lại là:
\(1-\frac{2}{3}=\frac{1}{3}\)
Quy đồng tử số: \(\frac{3}{5}=\frac{3}{5},\frac{3}{7}=\frac{3}{7},\frac{1}{3}=\frac{3}{9}\)
Nếu ban đầu tấm vải thứ nhất là \(5\)phần thì tấm vải thứ hai là \(7\)phần, tấm vải thứ ba là \(9\)phần.
Tổng số phần bằng nhau là:
\(5+7+9=21\)(phần)
Giá trị mỗi phần là:
\(210\div21=10\left(m\right)\)
Chiều dài tấm vải thứ nhất lúc đầu là:
\(10\times5=50\left(m\right)\)
Chiều dài tấm vải thứ hai lúc đầu là:
\(10\times7=70\left(m\right)\)
Chiều dài tấm vải thứ ba lúc đầu là:
\(10\times9=90\left(m\right)\)
Ta có:1/2 tấm 1=1/3 tấm 2 =1/4 tấm 3
Tấm 1 hai phần;tấm 2 ba phần;tấm 3 bốn phần
Tấm 1:108:(2+3+4)x2=24(m)
Tấm 2:24:2x3=36(m)
Tấm 3:36:3x4=48(m)
Đáp số:Tấm 1:24m
Tấm 2:36m
Tấm 3:48m