K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x) chia hết cho x^2+3x-1

=>(2a-b)=0 và 3b+a=0

=>a=b=0

15 tháng 10 2016

\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)

\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)

`@` `\text {Ans}`

`\downarrow`

`a)`

Để `x=1` là nghiệm của đa thức, `x=1` phải t/m giá trị của đa thức `=0`

`m*1^2+3*1+5 =0`

`m+3+5=0`

`m+8=0`

`=> m=0-8`

`=> m=-8`

Vậy, để đa thức nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị là `m=-8`

`b)`

Thay `x=1` vào đa thức:

`6*1^2+m*1-1`

` =6+m-1`

` =6-1+m`

`= 5+m`

`5+m=0`

`=> m=0-5`

`=> m=-5`

Vậy, để đa thức trên nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị `m=-5`

`c)`

Thay `x=1` vào đa thức:

`1^5-3*1^2+m`

`= 1-3+m`

`= -2+m`

`-2+m=0`

`=> m=0-(-2)`

`=> m=0+2`

`=> m=2`

Vậy, để `x=1` là nghiệm của đa thức thì giá trị của `m` thỏa mãn `m=2.`

`\text {#KaizuulvG}`

A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1

=4x^4+2x^3+2x^2-5x-1

16 tháng 4 2017

Đáp án D

Để hàm số liên tục tại điểm x = 2 thì  lim x → 2 + f x = f 2

Ta có

lim x → 2 + f x = lim x → 2 + x 2 + x − 6 x − 2 = lim x → 2 + x − 2 x + 3 x − 2 = lim x → 2 + x + 3 = 5  

lim x → 2 − f x = lim x → 2 − − 2 a   x + 1 = − 4 a + 1 ; f 2 = − 4 a + 1  

Do đó để hàm số liên tục thì 

− 4 a + 1 = 5 ⇔ a = − 1.

25 tháng 9 2017

Đáp án D