Tính m để hàm số xác định với mọi x lớn hơn 0
\(y=\sqrt{x-m-1}+\sqrt{4x-m}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\)
Hàm xác định trên R khi:
TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Anh ơi! Anh giúp em câu này ạ anh! Anh cho em xin phương pháp xác định điểm M và N theo hình chiếu song song với ạ (tổng quát cho mọi bài ạ anh.), em cũng chưa rõ phương pháp làm, nhìn hình mò một số đường để ra.
https://hoc24.vn/cau-hoi/cho-hinh-hop-abcdabcd-xac-dinh-diem-m-thuoc-ac-n-thuoc-bd-sao-cho-mn-di-voi-i-la-trung-diem-cua-aa-tinh-mamc.8751928472360
Với \(m=-1\) ktm
Với \(m\ne-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left(-2m-4\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m>1\)
Hàm xác định trên R khi và chỉ khi:
\(5sin4x-6cos4x+2m-1\ge0;\forall x\)
\(\Leftrightarrow5sin4x-6cos4x\ge1-2m;\forall x\)
\(\Leftrightarrow1-2m\le\min\limits_{x\in R}\left(5sin4x-6cos4x\right)\)
Ta có: \(\left(5sin4x-6cos4x\right)^2\le\left(5^2+\left(-6\right)^2\right)\left(sin^24x+cos^24x\right)=61\)
\(\Rightarrow5sin4x-6cos4x\ge-\sqrt{61}\)
\(\Rightarrow1-2m\le-\sqrt{61}\)
\(\Rightarrow m\ge\dfrac{1+\sqrt{61}}{2}\)
Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)
\(\Leftrightarrow mx-2x+2m-3\ge0\)
\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)
\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)
\(\Rightarrow1\le m\le\dfrac{11}{6}\)
\(2sinx.sin3x+4m.sin2x-cos2x-m^2+1\ge0;\forall x\)
\(\Leftrightarrow-cos4x+4m.sin2x-m^2+1\ge0\)
\(\Leftrightarrow2sin^22x+4m.sin2x-m^2\ge0\)
\(\Leftrightarrow2t^2+4m.t-m^2\ge0\) ; \(\forall t\in\left[-1;1\right]\)
\(\Leftrightarrow\left(t+m\right)^2\ge\dfrac{3m^2}{2}\)
\(\Rightarrow\left[{}\begin{matrix}t+m\ge\sqrt{\dfrac{3m^2}{2}}\\t+m\le-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t\ge-m+\sqrt{\dfrac{3m^2}{2}}\\t\le-m-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\)
Điều này đúng với mọi \(t\in\left[-1;1\right]\) khi:
\(\left[{}\begin{matrix}-1\ge-m+\sqrt{\dfrac{3m^2}{2}}\left(1\right)\\1\le-m-\sqrt{\dfrac{3m^2}{2}}\left(2\right)\end{matrix}\right.\)
- Xét (1), nếu \(m\le0\Rightarrow-m\ge0\Rightarrow-m+\sqrt{\dfrac{3m^2}{2}}>0\) (ktm)
Với \(m>0\Rightarrow-1\ge-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\le-2-\sqrt{6}\)
- Xét (2), với \(m>0\Rightarrow-m-\sqrt{\dfrac{3m^2}{2}}< 0\) (ktm)
Với \(m< 0\Rightarrow1\le-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\ge2+\sqrt{6}\)
Vậy \(\left[{}\begin{matrix}m\le-2-\sqrt{6}\\m\ge2+\sqrt{6}\end{matrix}\right.\)
Cách tam thức có vẻ tốt hơn cách này
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.