Tính :
a ) \(S=\frac{1}{3\sqrt{1}+3\sqrt{3}}+\frac{1}{3\sqrt{3}+3\sqrt{5}}+...+\)\(\frac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
b ) \(S=\frac{7}{\sqrt{2.2}+\sqrt{2.3}}+\frac{7}{\sqrt{2.3}+\sqrt{2.4}}\)\(+...+\frac{7}{\sqrt{2.2018}+\sqrt{2.2019}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)
\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)
\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)
\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)
\(S=\frac{\left(2019-1\right)}{2}=1009\)
\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)
\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)
\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)
\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)
\(S=\frac{1}{3\sqrt{1}+3\sqrt{3}}+\frac{1}{3\sqrt{3}+3\sqrt{5}}+...+\frac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
\(S=\frac{1}{3}\left(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(S=\frac{1}{3}\left[\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2019}-\sqrt{2017}}{2019-2017}\right]\)
\(S=\frac{1}{3}\cdot\frac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2017}}{2}\)
\(S=\frac{\sqrt{2019}-\sqrt{1}}{6}\)
\(2S=\frac{1}{3}\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(2S=\frac{1}{3}\left(\frac{3-1}{\sqrt{1}+\sqrt{3}}+\frac{5-3}{\sqrt{3}+\sqrt{5}}+...+\frac{2019-2017}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(2S=\frac{1}{3}\left(\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{3}+\sqrt{5}}+...+\frac{\left(\sqrt{2019}-\sqrt{2017}\right)\left(\sqrt{2019}+\sqrt{2017}\right)}{\sqrt{2019}+\sqrt{2017}}\right)\)
\(2S=\frac{1}{3}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2017}\right)\)
\(S=\frac{\sqrt{2019}-1}{6}\)
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)
Câu 1:
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)
\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)
=>n+1=3000
hay n=2999