Cho \(\Delta\)ABC vuông tại A, đường cao AH, trung tuyến AM. Biết \(\frac{AH}{AM}=\frac{40}{41}\)và AB<AC. Tính tỉ số \(\frac{AB}{AC}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = 18\(\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = 2\(\sqrt{41}\) ( VÌ AC > AB )
=> AB = 8\(\sqrt{41}\);AC=10\(\sqrt{41}\)
=> AB/AC = \(\dfrac{8\sqrt{41}}{10\sqrt{41}}=\dfrac{4}{5}\)
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = \(18\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )
=> AB = \(8\sqrt{41}\); AC = \(10\sqrt{41}\)
=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5
Tk mk nha
ban tinh AM=\(\frac{\sqrt{41}}{2}\) ;\(AB^2+AC^2=41\)
tinh ra AH=\(\frac{20\sqrt{41}}{41}\)
theo he thuc luong trong tam giac vuong
suy ra \(AB\cdot AC=20\)
\(AB=\frac{20}{AC}\)
thay vao AB^2+AC^2=41
ta co
\(\frac{400}{AC^2}+AC^2=41\)<=> AC=4
AB=5
do AB;AC binh dang nen AB=4; BC=5
vay (AB;AC)=(4;5);(5:4)
\(\frac{AH}{AM}=\frac{40}{41}\)
=>\(\frac{AH}{40}=\frac{AM}{41}=k\)
=>\(AH=40k\)
\(AM=41k\)
Tam giác ABC vuông tại A, AM là đường trung tuyến
=> \(AM=MC=\frac{BC}{2}=\frac{\sqrt{41}}{2}\)
=> 41k=\(\frac{\sqrt{41}}{2}\)=> k=\(\frac{\sqrt{41}}{82}\)
AH=40k=\(\frac{\sqrt{41}}{82}.40=\frac{20\sqrt{41}}{41}\)
Áp dụng định lí Pytago vào tam giác ABH ta có:
\(HM=\sqrt{AM^2-AH^2}=\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(\frac{20\sqrt{41}}{41}\right)^2}=\frac{9\sqrt{41}}{82}\)
HC =HM+MC=\(\frac{\sqrt{41}}{2}+\frac{9\sqrt{41}}{82}=\frac{25\sqrt{41}}{41}\)
HB=BC-HC=\(\frac{16\sqrt{41}}{41}\)
Áp dụng định lí Pytago ta sẽ tính được
AC=5
AB=4
Xét \(\Delta ABC\perp A\)ta có:
AM là trung tuyến ứng cạnh huyền BC
=> AM=BM=CM=41
Xét \(\Delta AHM\perp H\)ta có:
\(HM^2=AM^2-AH^2\left(pytago\right)\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)
Xét \(\Delta ABH,\Delta ABC\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)
Xét \(\Delta CHA,\Delta CAB\)có:
\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{C}:chung\)
\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)
\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)
Ta có:
\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)
Vậy \(\frac{AB}{BC}=\frac{16}{25}\)
:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>
Xét t/gABC_|_ A ta có:
AM là trung tuyến ứng vs cạnh huyền BC
=>AM=BM=CM=41
Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:
HM2=AM2-AH2
=>HM2=412-402=81
=>HM=\(\sqrt{81}\)=9
Ta có:
BH=BM-HM=41-9=32
CH=CM+HM=41+9=50
Xét t/gABH và t/gABC ta có:
^ABH=^ABC=90o
=>^B chung
=>t/gABH~t/gABC(g.g)
=>BA/BH=BC/BA=>BA2=BH.BC
Xét t/gCAB và t/g CHA ta có:
^CAB=^CHA=90o
=>^C chung
=>AC/AH=BC/AC=>AC2=HC.BC
=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25
=> tỉ số hai cạnh góc AB/AC=16/25
Đặt \(\frac{AH}{40}=\frac{AM}{41}=a\Rightarrow AH=40a;AM=41a\)
=> HM=9a và BC=2AM=82a
=> HC=9a+41a=50a
Mà \(\Delta ABC\infty HAC\Rightarrow\frac{AB}{AC}=\frac{HA}{HC}=\frac{40A}{50A}=\frac{4}{5}\)
vẬY ....
^_^