K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

dấu hiệu thuộc tập hợp Q viết sao

26 tháng 6 2018

*) Giả sử \(\sqrt{n}\)là số hữu tỉ => n là một số chính phương => \(a\sqrt{n}\)là số hữu tỉ
Đặt n=k2(k>=1) => \(b\sqrt{n+1}=b\sqrt{k^2+1}\)
Do k>=1 nên k2+1 không phải số chính phương =>\(b\sqrt{k^2+1}\)là số vô tỉ
Mà tổng số hữu tỉ với 1 số vô tỉ là số vô tỉ => đpcm
*) Giả sử \(\sqrt{n+1}\)là số hữu tỉ (chứng minh như trên)

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

Lời giải:

Ta thực hiện chứng minh đẳng thức trên đúng bằng quy nạp

Với $n=2$: \((a+b)^=a^2+2ab+b^2=C^0_2a^2b^0+C^1_2ab+C^2_2a^0b^2\) (đúng)

................

Giả sử đẳng thức đúng đến $n=t$ $(t\in\mathbb{Z}>2$), tức là \((a+b)^t=\sum ^t_{k=0}C^k_ta^{t-k}b^k\)

Ta cần chứng minh nó cũng đúng với $n=t+1$. Thật vậy:

\((a+b)^{t+1}=(a+b)^t(a+b)=(a+b)\sum ^{t}_{k=0}a^{t-k}b^k\)

\(=C^0_ta^{t+1}+(C^1_t+C^0_t)a^tb+(C^2_t+C^1_t)a^{t-1}b^2+....+(C^t_t+C^{t-1}_t)ab^t+C^t_tb^{t+1}\)

\(=C^0_{t+1}a^{t+1}+C^1_{t+1}a^tb+C^2_{t+1}a^{t-1}b^2+....+C^t_{t+1}ab^t+C^{t+1}_{t+1}b^{t+1}\) (sử dụng đẳng thức \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\)\(C^0_t=C^0_{t+1}=1; C^t_t=C^{t+1}_{t+1}=1\))

\(=\sum ^{t+1}_{k=0}C^{k}_{t+1}a^{t+1-k}b^k\)

Phép chứng minh hoàn tất. Ta có đpcm.

8 tháng 7 2019

chị Akai Haruma giúp em với

11 tháng 2 2017

a) Không thể. VD: 6 chia hết cho 3; 6 chia hết cho 6; 6 không chia hết cho 18

b)Không thể. VD: 3.4 chia hết cho 6; 3 ko chia hết cho 6; 4 ko chia hết cho 6

11 tháng 12 2018

d,Gọi ƯCLN (n.(n+1) /2 , 2n+1 ) =d

=) n.(n+1) /2 chia hết cho d

2n+1 chia hết cho d

=)2.(n.(n+1) /2) chia hết cho d

2n+1 chia hết cho d

=)2n2+2n chia hết cho d

2n+1 chia hết cho d

=) ( 2n2+2n) - (2n2+n)chia hết cho d

=)n chia hết cho d

Lại có 2n+1 chia hết cho d

=) 2n chia hết cho d

2n +1 chia hết cho d

=) (2n +1 ) - (2n ) chia hết cho d

=) 1 chia hết cho d

=) d thuộc Ư ( 1)

=) d=1

Vậy n.(n+1) /2 và 2n + 1 là hai số nguyên tố cùng nhau

11 tháng 12 2018

a, 2n + 5 và 3n + 7

Gọi ƯCLN ( 2n+5, 3n + 7)=d

=) 2n+5 chia hết cho d , =) 3. (2n+5) chia hết cho d

3n +7 chia hết cho d , 2. ( 3n+7) chia hết cho d

=) 6n+15 chia hết cho d

6n+14 chia hết cho d

=)(6n+15 )- (6n+14) chia hết cho d

=) 1 chia hết cho d

=) d thuộc ƯC ( 1 )

=) ƯCLN (2n+5,3n+7)=1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

Câu b , c tượng tự bạn nhé !

22 tháng 8 2018

@Akai Haruma giúp em vs

1: \(\sqrt{a}\in N\)

nên căn a=x(với x là số tự nhiên)

=>\(a=x^2\) là số chính phương

2: \(\sqrt{a}\in I\) có nghĩa là căn a là số vô tỉ

nên chắc chắn a ko là số chính phương

NV
6 tháng 1

Bài toán chia kẹo kinh điển đây mà.

Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:

loading...

Bây giờ có số tự nhiên n, ta phân tích nó như sau:

\(n=1+1+1+...+1+1+1\)

Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:

\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)

Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6. 

Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\)  tấm vách ngăn.

Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).

Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.

Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.

//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.

Khi đó:

\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)

\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)

Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm. 

Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:

\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên

Công thức đầu của em có vẻ bị sai :D

Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).