K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

a + b = ab => a = ab - b = b( a - 1 )

Thay a = b( a - 1 ) ta được :

a + b = b( a - 1 )/b = a - 1

=> a + b - a = -1

=> b = -1 

Có :

-1 + a = a . ( -1 ) 

-1 + a = -a

-1 = -a - a

-1 = -2a

a = -1 : ( -2 )

a = 1/2

26 tháng 6 2018

Từ \(a+b=ab\Rightarrow a=ab-b=b(a-1)\Rightarrow\frac{a}{b}=a-1(b\ne0)\)

Mặt khác,theo đề bài : \(\frac{a}{b}=a+b\)

Suy ra : \(a-1=a+b\Rightarrow b=-1\)

Thay b = -1 vào a + b = ab ta được a - 1 = -a => 2a = 1 => a = \(\frac{1}{2}\)

Vậy : \(\hept{\begin{cases}a=\frac{1}{2}\\b=-1\end{cases}}\)

Chúc bạn học tốt~

2 tháng 7 2019

Đề thiếu ko nhỉ? cộng b^2 nữa chứ 

\(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^2\)

\(=\left[\left(a-b\right)\left(a-4b\right)\right]\left[\left(a-2b\right)\left(a-3b\right)\right]+b^2\)

\(=\left(a^2-4ab-ab+4b^2\right)\left(a^2-3ab-2ab+6b^2\right)+b^2\)

\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^2=\left(a^2-5ab+5b^2\right)^2-b^2+b^2\)

\(=\left(a^2-5ab+b^2\right)^2\rightarrowđpcm\)

14 tháng 1 2021

Câu đề HN vừa thi hôm trước, sửa thành tìm max

Áp dụng BĐT Bunyakovsky ta có:

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\le6\) 

\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)

Dấu "=" xảy ra khi a = b = c = 1/3

Làm xong mới thấy không giống lắm hihi:D

11 tháng 5 2020

1) a + b = - 12  và ab = 20 

a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)

hay \(X^2+12X+20=0\)

Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)

Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2) 

Các bài còn lại đưa về tổng và tích rồi làm như câu 1.

11 tháng 5 2020

a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)

\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)

b)  \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)

=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý) 

=> Hệ vô nghiệm 

2 ý còn lại tương tự nha bn ơi 

14 tháng 6 2019

\(A+\frac{1}{4}=x+\frac{1}{2}.2\sqrt{x}+\left(\frac{1}{2}\right)^2=\left(\sqrt{x}+\frac{1}{2}\right)^2\ge\left(0+\frac{1}{2}\right)^2=\frac{1}{4}\)

nên: \(A_{min}=0\).Dấu "=" xảy ra khi: \(x=0\)

6 tháng 5 2018

vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)

dấu = xảy ra khi \(a=b=c=1\)

vậy min của P là 8 khi a=b=c=1

Bạn có thể tham khảo tại:

https://olm.vn/hoi-dap/question/922685.html

Chúc bạn học giỏi