tìm giá trị nhỏ nhất
x2-6x+10
MỌI NGƯỜI GIÚP EM! EM CẢM ƠN MỌI NGƯỜI NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11:
=>4,6x=6,21
=>x=1,35
12: \(A=-\left(1.4-x\right)^2-1.4< =-1.4\)
=>x=-1,4
Câu 9:
\(\Leftrightarrow\dfrac{10a+b}{100c+90+d}=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{92}-\dfrac{1}{97}=\dfrac{1}{2}-\dfrac{1}{97}=\dfrac{95}{194}\)
=>a=9; b=5; c=1; d=4
=>a+b+c+d=9+5+1+4=19
Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`
A = - \(x^2\) - 4\(x\)
A = -(\(x^2\) + 4\(x\) + 4) + 4
A = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4 ≤ 4
⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2
Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2
B = - 9\(x^2\) + 24\(x\) - 18
B = - (9\(x^2\) - 24\(x\) + 16) - 2
B = -(3\(x\) - 4)2 - 2
(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2
Bmax = -2 ⇔ 3\(x\) - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\)
Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\)
\(A=-x^2-4x\)
\(\Rightarrow A=-x^2-4x-4+4\)
\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)
\(\Rightarrow A=-\left(x+2\right)^2+4\)
mà \(-\left(x+2\right)^2\le0,\forall x\)
\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)
Vậy GTLN của A là 4
\(B=-9x^2+24x-18\)
\(\Rightarrow B=-9x^2+24x-16+16-18\)
\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\)
mà \(-\left(3x-4\right)^2\le0,\forall x\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)
Vậy GTLN của B là -2
x^2-6x+10
=(x^2-2.3.x+3^2)+1
=(x-3)^2+1
Có(x-3)^2\(\ge\)0
\(\Rightarrow\)(x-3)^2+1\(\ge\)1.Dấu "=" xảy ra\(\Leftrightarrow\)(x-3)^2=0
\(\Leftrightarrow\)x-3=0
\(\Leftrightarrow\)x=3
Vậy A min=1\(\Leftrightarrow\)x=3
Hok tốt ^_<