Biết với mọi x thì (x-a)(x-b)(x-c) và x3-7x+6 có giá trị bằng nhau. Tìm ab-abc-c2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x và y tỉ lệ thuận nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{6}{-2}=-3\)
=>x=-3y
b: x=-3y
=>\(y=-\dfrac{1}{3}x\)
Thay x=2 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
Thay x=4 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot4=-\dfrac{4}{3}\)
a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)
\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)
Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên
hay P là số nguyên(đpcm)
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....