K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

ta có 

\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2ab^2c-2abc^2-2a^2cb\)

\(\left(ab+bc+ca\right)^2-2abc\left(c+a+b\right)=\left(ab+bc+ca\right)^2\)

vậy \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)

10 tháng 8 2016

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

26 tháng 10 2016

Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)

Áp dụng BĐT Bunhiacopxki : 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)

\(\le2\left(3.2+12.1\right)=36\)

\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)

Dấu "=" xảy ra khi a = b = 1

12 tháng 2 2019

ÁP DỤNG BĐT CÔ SI ,TA CÓ:

\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\) 

(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\) 

TA CÓ  :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3)  TA CÓ;

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\) 

DẤU ĐẲNG THỨC XẢY RA KHI a=b=1

26 tháng 11 2022

\(C=\dfrac{\left(b-c+c-a\right)^3+3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)+\left(a-b\right)^3}{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{a^2b-b^2a-a^2c+b^2c+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{\left(a-b\right)\cdot ab-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(ab-ac-bc+c^2\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)}{a\left(b-c\right)-c\left(b-c\right)}=3\)

27 tháng 7 2016

Chả biết

22 tháng 1 2016

không làm thì thôi đi rối mắt kệ các bạn chứ ai hỏi đâu mà phô ra

22 tháng 1 2016

Thùy Giang : bn nói đúng , bọn này ngu mà cứ thích cmt linh tinh