cho tam giác ABC vuông góc ở đỉnh A.Vẽ AH vuông góc với BC, HE vuông góc với AC, HF vuông góc với AB ( H thuộc BC; E thuộc AC; F thuộc AB).Tìm trong hình vẽ những cặp góc nhọn bằng nhau, Biết rằng 2 góc có 2 cặp cạnh tương ứng vuông góc thì bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : góc vuông = 90o
a)
- tia AH cắt tia BC là góc vuông nên HA là tia phân giác của góc BAC nên :
\(\widehat{BAH}=\widehat{HAC}\) = 90o:2 = 45o
- tia EH cắt tia BC là góc vuông nên AB là tia phân giác của góc BAC nên :
\(\widehat{BHE}=\widehat{EAH}\) = 90o:2 = 45o
=> \(\widehat{ABC}=\widehat{HAC}\) (45o=45o) (đpcm)
b) ta có: + \(\widehat{BHE}\) =45o ( câu a )
+ \(\widehat{FHA}\) = 45o (câu a)
=> \(\widehat{BHE}\) = \(\widehat{FHA}\) (45o=45o) (đpcm)
d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có
HB=HC(ΔABH=ΔACH)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)
Suy ra: HE=HF(Hai cạnh tương ứng)
a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A
⇒\(\widehat{C}\)=30
MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}\) + 30+30=180
⇒\(\widehat{A}\)=180-30-30
⇒\(\widehat{A}\)=120
xÉT ΔAHB vuông tại H, ΔAHC vuông tại H
CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)
⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)
⇒\(\widehat{BAH}=\widehat{CAH}\)
C.TRONG TAM GIÁC AHC VUÔNG TẠI H
⇒\(AC^2=HC^2+AH^2\)
⇒\(AC^2\)=\(4^2\)+\(3^2\)
⇒\(AC^2\)=16+9
AC=\(\sqrt{25}\)=5CM
D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F
CÓ: AH : CẠNH HUYỀN CHUNG
\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)
⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)
⇒HE=HF (2 CẠNH TƯƠNG ỨNG)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
2.tự vẽ hình nhe
xét tam giác abc có
Góc CAx= góc B+góc C =40 + 10=80<đlí góc ngoài tam giác>
Vì Ac là phân giác của A
Góc A1=A2=1/2A=40
Ta có A2=C=40
Mà hai góc này ở vị trí so le trong
suy ra ax song song BC
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)