Cho phân số A= 2x+3/2x+1
Tìm các số nguyên x để A có Giá trị lớn nhất
Đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
a) để A là phân số thì
- 2x+5 là số nguyên => 2x+5 nguyên với mọi x nguyên
- 2x-1 nguyên va 2x-1#0 => 2x-1 nguyên và 2x-1#0 với mọi x nguyên
vậy A là phân số với mọi x nguyên.
b) nhận thấy 2x -1 là số lẻ nên
(1) <=> A = 1 + 6/(2x-1) để A nguyên thì 1 + 6/(2x-1) nguyên <=> 6/(2x-1) nguyên <=>
<=> 6 chia hết cho (2x-1) hay (2x-1) là ước lẻ của 6 vậy:
(2x-1) = { 1 ; 3 ; -1 ; -3 } (*)<=> 2x = { 2 ; 4 ; 0 ; -2 } <=>
<=> x = { 1 ; 2 ; 0 ; -1}
vì x nguyên nên x chỉ lấy các giá trị : x = {1 ; 2 ; -1}
c) A = 1 + 6/(2x-1) để Amax thì 1 + 6/(2x-1) max <=> 6/(2x-1) max
vì 6 > 0 nên để 6/(2x-1)max thì (2x-1) là ƯSC dương lẻ nhỏ nhất của 6 với x nguyên dương
<=> 2x-1 = 1 (theo (*)) <=> x = 1 khi đó Amax = 1 + 6/1 = 7
để Amin thì 1 + 6/(2x-1)min <=> 6/(2x-1)min
vì 6 > 0 nên để 6/(2x-1)min thì (2x-1) là ƯSC âm lẻ lớn nhất của 6 với x nguyên âm=> (2x-1) = -1
nhưng (2x-1) = -1 (theo (*)) lại ứng với x = 0 ma x nguyên nên loại trường hợp này nên:
2x-1 = -3 (theo (*)) <=> x = -1 khi đó Amin = 1 + 6/(-1) = -5.
a)để A là phân số => x khác 1/2
b) Để A\(\in\)Z
=> \(2x+5⋮2x-1\)
ta có : 2x-1\(⋮\)2x-1
=>(2x+5)-(2x-1)\(⋮\)2x-1
=>6\(⋮\)2x-1
=> 2x-1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | \(\frac{3}{2}\) | \(\frac{-1}{2}\) | 2 | -1 | \(\frac{7}{2}\) | \(-\frac{5}{2}\) |
Mà A \(\in\)Z
Vậy x\(\in\){\(\pm\)1;0;2}
c) ta có :A= \(\frac{2x-5}{2x-1}=\frac{2x-1-4}{2x-1}=\frac{2x-1}{2x-1}-\frac{4}{2x-1}=1-\frac{4}{2x-1}\)
để A lớn nhất
=>\(1-\frac{4}{2x-1}\)lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)
\(A=\frac{2x+3}{2x+1}=\frac{2x+1+2}{2x+1}=1+\frac{2}{2x+1}\)
để A đạt gtln thì \(\frac{2}{2x+1}\) lớn nhất
=> 2x + 1 là số nguyên dương nhỏ nhất
=> 2x + 1 = 1
=> 2x = 0
=> x = 0
vậy x = 0 và \(MAX_A=\frac{2\cdot0+3}{2\cdot0+1}=3\)
......................?
mik ko biết
mong bn thông cảm !$$%