Cho phân số A= 2n+8/n+1 (nEN) . Tìm các số tự nhiên n để A là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phân số \(A=\frac{2n+8}{n+1}\)(n \(\varepsilon\)N) . Tìm các số tự nhiên n để A là số nguyên tố.
để A là số nguyên tố thì phải đảm bảo A thuộc N
để A thuộc N
=> 2n + 8 chia hết cho n + 1
=> 2.(n + 1) + 6 chia hết cho n+ 1
=> 6 chia hết cho n +1
=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}
=> n+1 =1 => n = 0
n+1 = 2 => n = 1 (snt)
n+1 =3 => n = 2 (sgt)
n + 1 = 6 => n = 5 (snt)
=> n = {1;2;5}
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
THAM KHẢO :
(n là số nguyên tố)
TH1: n-2 =1 và 2n-5 =p
n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)
TH2: 2n-5=1 và n-2=p
2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)
TH3: 2n-5=-1 và n-2 = - p
2n-5=-1=>n=2 . Thay n=2 vào n-2=1=> A không là số nguyên tố (không hợp lí)
TH4: n-2=-1 và 2n-5 =-p
n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp lí)
\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)
\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)
\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)
\(=>6\text{chia hết cho d}\)
\(=>\text{ d thuộc ước của 6}\)
\(\text{Để A là số nguyên tố thì d khác 6 }\)
\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)