cho 2 số thực x và y thỏa mãn các điều kiện \(1\le x\le2\), \(1\le y\le2\) tìm giá trị nhỏ nhất của biểu thức
\(A=\frac{x+2y}{x^2+3y+5}+\frac{y+2x}{y^2+3x+5}+\frac{1}{4\left(x+y-1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Tương tự \(y^2+2\le3y\)
Do đó:
\(P=\frac{x+2y}{x^2+2+3y+3}+\frac{2x+y}{y^2+2+3x+3}+\frac{1}{4\left(x+y-1\right)}\ge\frac{x+2y}{3x+3y+3}+\frac{2x+y}{3x+3y+3}+\frac{1}{4\left(x+y-1\right)}\)
\(P\ge\frac{3x+3y}{3x+3y+3}+\frac{1}{4\left(x+y-1\right)}=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\)
Đặt \(x+y=t\Rightarrow2\le t\le4\)
\(\Rightarrow P\ge\frac{t}{t+1}+\frac{1}{4t-4}=\frac{t}{t+1}+\frac{1}{4t-4}-\frac{7}{8}+\frac{7}{8}\)
\(P\ge\frac{\left(t-3\right)^2}{8\left(t^2-1\right)}+\frac{7}{8}\ge\frac{7}{8}\)
\(P_{min}=\frac{7}{8}\) khi \(t=3\) hay \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Đặt: y + z = a thì ta có
\(x\le2a\)
Từ đề bài thì ta có thể suy ra
\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)
\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)
\(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)
Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\)
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)
Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)
\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)
Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)
\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...
Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!
P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v
Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))