OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải và biện luận phương trình : \(\frac{2x+a}{a-2}-\frac{a-2x}{a+2}=\frac{6a}{a^2-4}\)
\(\frac{2x+a}{a-2}-\frac{a-2x}{a+2}=\frac{6a}{a^2-4}\)
\(\text{ĐKXĐ}:\hept{\begin{cases}a-2\ne0\\a+2\ne0\Leftrightarrow a\ne\pm2\\a^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\left(2x+a\right)\left(a+2\right)-\left(a-2x\right)\left(a-2\right)=6a\)
\(\Leftrightarrow2ax+4x+a^2+2a-a^2+2a+2ax-4x=6a\)
\(\Leftrightarrow4ax+4a=6a\)
\(\Leftrightarrow4ax=2a\)
TH1 : \(a\ne0\). \(4ax=2a\Leftrightarrow\frac{2a}{4a}=\frac{1}{2}\)
TH2 : \(a=0\). \(4ax=2a\Leftrightarrow0.x=0\)=> PT nghiệm đúng với mọi x
Kết luận :
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
Giải và biện luận phương trình: \(\frac{x-a}{a-4}+\frac{x+a-1}{a+4}+\frac{a-x}{a^2-16}=0\)
bài này dễ quá mk k lm đc!
Giải và biện luận phương trình:
a)\(\frac{an}{a-x}+\frac{\left(a+n\right)\left(\text{anx}+nx^2+x^3\right)}{x^3+nx^2-a^2x-a^2n}=\frac{\text{ax}}{n+x}+\frac{nx^2}{x^2-a^2}\left(a\ne0\right)\)
b)\(\frac{a+x}{a^2+\text{ax}+x^2}-\frac{a-x}{\text{ax}-x^2-a^2}=\frac{3a}{2\left(a^4+a^2x^2+x^4\right)}\)
bạn tách từng câu ra
chua hoc den moi lop 7
giải và biện luận phương trình theo a
\(\frac{x-a}{x+a}-\frac{x+3}{x-a}+\frac{3a^2+a}{x^2-a^2}=0\)
Giải và biện luận theo tham số nghiệm các phương trình sau:
a) \(\frac{6b+7a}{6b}-\frac{3ax}{2b^2}=1-\frac{ax}{b^2-ab}\)(a,b là tham số)
b) \(7\left(m-1\right)x-2x+14=5m\)(m là tham số)
giải và biện luận pt tham số a :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a^2=\frac{x^2}{x^2-b^2}\)
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\))(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
Giải và biện luận phương trình \(\frac{ax-1}{x-1}+\frac{2}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
chtt
\(\frac{2x+a}{a-2}-\frac{a-2x}{a+2}=\frac{6a}{a^2-4}\)
\(\text{ĐKXĐ}:\hept{\begin{cases}a-2\ne0\\a+2\ne0\Leftrightarrow a\ne\pm2\\a^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\left(2x+a\right)\left(a+2\right)-\left(a-2x\right)\left(a-2\right)=6a\)
\(\Leftrightarrow2ax+4x+a^2+2a-a^2+2a+2ax-4x=6a\)
\(\Leftrightarrow4ax+4a=6a\)
\(\Leftrightarrow4ax=2a\)
TH1 : \(a\ne0\). \(4ax=2a\Leftrightarrow\frac{2a}{4a}=\frac{1}{2}\)
TH2 : \(a=0\). \(4ax=2a\Leftrightarrow0.x=0\)=> PT nghiệm đúng với mọi x
Kết luận :