K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

A D B C H

qua A kẻ đường thẳng // với DB và giao CB tại K

ta có : tứ giác akbd là hình bình hành (do ak//db,ad//bk)

=>ak=bd=n

ta co: ak//bd

mà bd vuông góc với ac => ak vuông goc với ac

xet tam giac vuong ack co:

\(\frac{1}{ah^2}\)=\(\frac{1}{ac^2}\)+\(\frac{1}{ak^2}\)

hay 1/h^2=1/m^2+1/n^2

28 tháng 8 2017

Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.

Vì OE=OF=OG=OH=h

và:AC=m;OA=OC-->OA=OC=m/2

tg tự với DB=n;DO=DB ta cũng có:

DO=OB=n/2

Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)

và OF là đường cao có:

1/OF=1/OA^2+1/OB^2

-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2                        (1)

CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)

Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2

Chia cả  2 vế cho 16 ta đc điều phải cm

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Vì $ABCD$ là hình thoi nên $AC\perp BD$ tại $O$ và $AC,BD$ cắt nhau tại trung điểm $O$ của mỗi đường

$\Rightarrow AO=\frac{AC}{2}=\frac{m}{2}; DO=\frac{BD}{2}=\frac{n}{2}$

Xét tam giác $AOD$ vuông tại $O$, áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{d(O, AD)^2}=\frac{1}{OA^2}+\frac{1}{OD^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{(\frac{m}{2})^2}+\frac{1}{(\frac{n}{2})^2}=\frac{4}{m^2}+\frac{4}{n^2}$

$\Leftrightarrow \frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ: