K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

Do đó: ΔHDC đồng dạng với ΔHFA
Suy ra: HD/HF=HC/HA

hay \(HD\cdot HA=HC\cdot HF\)

Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

góc DBH=góc DAC

Do đó: ΔDBH đồng dạng với ΔDAC

Suy ra: DB/DA=DH/DC

hay \(DB\cdot DC=DH\cdot DA\)

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

Do đó: ΔAEB đồng dạng với ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

Do đo: ΔAEF đồng dạng với ΔABC

=>góc AFE=góc ACB

a: Xét ΔABC có

BD là đường cao ứng với cạnh AC

CE là đường cao ứng với cạnh AB

BD cắt CE tại H 

Do đó: H là trực tâm của ΔBAC

hay AH\(\perp\)BC tại K

Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

\(\widehat{HBK}\) chung

Do đó: ΔBKH\(\sim\)ΔBDC

Suy ra: \(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)

hay \(BH\cdot BD=BK\cdot BC\)

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

a: góc BEC=góc BFC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

b: Xét ΔABD và ΔANC có

góc ABD=góc ANC

góc BAD=góc NAC

=>ΔABD đồng dạng với ΔANC

=>AB/AN=BD/NC

=>AB*NC=AN*BD

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN