1/ Cho hình nón có bán kính đáy bằng 3m, diện tích toàn phần bằng 24\(\pi\)m2 . Tinh thể tích hình nón
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Phương pháp:
Cách giải:
Gọi bán kính đáy và chiều cao của hình nón lần lượt là r , h ( r , h > 0 ) .
Đáp án D
Gọi l là độ dài đường sinh của hình nón.
Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có:
Đáp án D
Gọi l là độ dài đường sinh của hình nón.
Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có:
\(1.Sxq=\pi Rl=\pi3.5=15\pi cm^2\)
\(Stp=Sxq+\pi R ^2=15\pi+9\pi=24\pi cm^2\)
\(2.V=\dfrac{1}{3}\pi R^2.\sqrt{l^2-R^2}=\dfrac{1}{3}\pi.3^2.\sqrt{5^2-3^2}=12\pi cm^3\)
Chọn C.
Phương pháp:
Công thức liên hệ giữa bán kính đáy, chiều cao và đường sinh của hình nón:
Diện tích xung quanh của hình nón :
Diện tích toàn phần của hình nón :
\(S_{\text{mặt đáy}}:\pi.3^2=9\pi\left(cm^2\right)\)
\(S_{\text{xung quanh}}:\pi rl=\pi.3.l=24\pi-9\pi=15\pi\Rightarrow l=5\left(cm^2\right)\)
\(\text{Chiều cao khối chóp}:h=\sqrt{l^2-r^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(V:\frac{1}{3}\pi r^2h=\frac{1}{3}\pi.3^2.4=12\pi\left(cm^3\right)\)
Diện tích mặt đáy là : \(\pi.3^2=9\pi(m^2)\)
Diện tích xung quanh là : \(S_{xq}=\pi rl=\pi.3.l=24\pi-9\pi=15\pi=>l=5(m)\)
Chiều cao của khối chóp là \(h=\sqrt{l^2-r^2}=\sqrt{5^2-3^2}=4(m)\)
Thể tích của hình nón là : \(V=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi.3^2.4=12\pi(m^3)\)