Tính
A=1+1/2(1+2)+1/3:(1+2+3)+...+100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)
\(A=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{100}\right)\)
\(A=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{101}{100}\)
\(A=\frac{101}{2}\)
A = \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{101}{100}\)
A = \(\frac{101}{2}\)
a.\(\dfrac{27}{8}\)
b.\(\dfrac{37}{40}\)
c.\(\dfrac{5}{2}\)
d.\(\dfrac{7}{3}\)
e.5
g.\(\dfrac{53}{16}\)
Bài 1 :
a) \(\dfrac{3}{2}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{12}{8}+\dfrac{10}{8}+\dfrac{5}{8}=\dfrac{12+10+5}{8}=\dfrac{27}{8}\)
b) \(\dfrac{4}{5}-\dfrac{3}{8}+\dfrac{2}{4}=\dfrac{32}{40}-\dfrac{15}{40}+\dfrac{20}{40}=\dfrac{32-15+20}{40}=\dfrac{37}{40}\)
c) \(3+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{3}{1}+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{24}{8}+\dfrac{6}{8}-\dfrac{10}{8}=\dfrac{20}{8}=\dfrac{5}{2}\)
d) \(\dfrac{5}{6}-\dfrac{1}{2}+2=\dfrac{5}{6}-\dfrac{1}{2}+\dfrac{2}{1}=\dfrac{5}{6}-\dfrac{3}{6}+\dfrac{12}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
e) \(\dfrac{3}{5}+\dfrac{6}{11}+\dfrac{7}{13}+\dfrac{2}{5}+\dfrac{16}{11}+\dfrac{19}{13}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{6}{11}+\dfrac{16}{11}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)=1+2+2=5\)
g) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}=\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{13}{32}=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{29}{32}+\dfrac{13}{32}\right)=1+1+\dfrac{21}{16}=2+\dfrac{21}{16}=\dfrac{53}{16}\)
`1`
`a, 1/2 +1/3= 3/6 + 2/6 =5/6`
`d, 1/3 +3/5= 5/15 + 9/15=14/15`
`c,4/5 +1/2= 8/10 + 5/10= 13/10`
`2`
`a,1/2 +1/4=2/4 +1/4=3/4`
`b, 2/3 +1/6 = 4/6+1/6=5/6`
`c, 7/12 +1/2=7/12+ 6/12= 13/12`
`3`
Giải
Cả `2` ngày đi tất cả số quãng đường là :
`1/4 +1/2 =1/4+ 2/4= 3/4 ( quãng đường)`
đ/s...
`@ yL`
1:
a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)
b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)
=>2x-1>0
=>x>1/2
2:
a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)
\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)
\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)
\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)
\(=45\sqrt{2}-19\sqrt{5}\)
b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)
\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)
\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)
\(a,\dfrac{1}{2-\sqrt{3}}-3\sqrt{\dfrac{1}{3}}+\sqrt{12}\\ =\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\dfrac{\sqrt{3^2}}{\sqrt{3}}+\sqrt{2^2.3}\\ =\dfrac{2+\sqrt{3}}{4-3}-\sqrt{3}+2\sqrt{3}\\ =2+\sqrt{3}-\sqrt{3}+2\sqrt{3}\\ =2+2\sqrt{3}\)
\(b,\dfrac{2}{1+\sqrt{2}}-\sqrt{9-\sqrt{32}}\\ =\dfrac{2\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\sqrt{9-4\sqrt{2}}\\ =\dfrac{2-2\sqrt{2}}{1-2}-\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\\ =-2+2\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =-2+2\sqrt{2}-\left|2\sqrt{2}-1\right|\\ =-2+2\sqrt{2}-2\sqrt{2}+1\\ =-1\)
a \(\dfrac{53}{84}\)
b \(\dfrac{20}{63}\)
c \(\dfrac{1}{60}\)
a: \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{4}=\dfrac{56}{84}+\dfrac{60}{84}-\dfrac{63}{84}=\dfrac{53}{84}\)
b: \(=\dfrac{3}{7}-\dfrac{1}{9}=\dfrac{27}{63}-\dfrac{7}{63}=\dfrac{20}{63}\)
c: \(=\dfrac{2}{5}\cdot\dfrac{1}{8}\cdot\dfrac{1}{3}=\dfrac{2}{8}\cdot\dfrac{1}{15}=\dfrac{1}{60}\)