Rút gọn
(2x +1) 2+2(4x2-1) +(2x-1) 2
trả lời nhanh giúp mk đúng mk tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left(2x-1\right)-\left|x-5\right|\)
\(=6x-3-\left|x-5\right|\)
TH1 : \(x-5\ge0\Rightarrow x\ge5\Rightarrow\left|x-5\right|=x-5\)
\(A=6x-3-x+5\)
\(=5x+2\)
TH2 : \(x-5< 0\Rightarrow x< 5\Rightarrow\left|x-5\right|=5-x\)
\(A=6x-3-5+x\)
\(=7x-8\)
Vậy ....
a) (x-y)2-(x2-2xy)
=y2-2xy+x2-x2+2xy
=y2-(-2xy+2xy)+(x2-x2)
=y2
b)(x-y)2+x2+2xy-(x+y)2
=y2-2xy+x2+x2+2xy-y2-2xy-x2
=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)
=x2-2xy
a, `(8x^3-4x^2): 4x -(4x^2-5x) : 2x + (2x)^2`
`=4x (2x^2-x) : 4x - 2x(2x-5/2 ) :2x + 4x^2`
`=2x^2-x-2x+5/2+4x^2`
`=6x^2-3x+5/2`
b, `(3x^3-x^2y) :x^2 -(xy^2+x^2y) :xy + 2x(x+1)`
`=x^2 (3x-y) :x^2 -xy(y+x) + (2x^2+2x)`
`=3x-y-y-x+2x^2+2x`
`=2x^2+4x-2y`
x+1 chia hết 2x-1
2(x+1) chia hết 2x-1
2x+2 chia hết 2x-1
2x-1+3 chia hết 2x-1
3 chia hết 2x-1
Do 2x-1 là số lẻ nên 2x-1=-3;-1;1;3
2x=-2;0;2;4
x=-1;0;1;2
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
Ta thấy: Biểu thức trên có dạng \(\left(a+b\right)^2=a^2+2ab+b^2\)
Áp dụng vào ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(2x+1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=4x^2=\)