Tại sao f'(t)>0 suy ra được mcosx-sinx=2(1-sinx) vậy ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
b: ta có: MF\(\perp\)AC
AB\(\perp\)AC
Do đó: MF//AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
\(f\left(1998\right)=1998^2a+1998b+c=1\)
\(f\left(2000\right)=2000^2a+2000b+c=2\)
\(\Rightarrow2000^2a+2000b+c-\left(1998^2a+1998b+c\right)=2-1\)
\(\Leftrightarrow\left(2000^2-1998^2\right)a+2b=1\)
Ta có: \(2000^2-1998^2\) là số chẵn \(\Rightarrow\left(2000^2-1998^2\right)a\) chẵn (do a nguyên)
\(\Rightarrow\left(2000^2-1998^2\right)a+2b\) chẵn
Mà 1 là số lẻ
=> Không tồn tại các số nguyên a, b sao cho \(\left(2000^2-1998^2\right)a+2b=1\)
=> đpcm.
Tính chất hàm đặc trưng
Nếu \(f\left(x\right)\) đơn điệu thì \(f\left(x_1\right)=f\left(x_2\right)\Leftrightarrow x_1=x_2\)
Ở đây \(f\left(t\right)=e^t+t\) đơn điệu nên \(f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
Trong đó \(\left\{{}\begin{matrix}t_1=m.cosx-sinx\\t_2=2\left(1-sinx\right)\end{matrix}\right.\)