K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

Thiếu điều kiện a>0 

Ta có: \(M=\frac{a^2-2a+2018}{a}=a-2+\frac{2018}{a}=\left(a+\frac{2018}{a}\right)-2\)

Áp dụng BĐT Cosi cho 2 số dương \(a;\frac{2018}{a}\) ta có:

\(a+\frac{2018}{a}\ge2\sqrt{a\cdot\frac{2018}{a}}=2\sqrt{2018}\)

\(\Rightarrow M=\left(a+\frac{2018}{a}\right)-2\ge2\sqrt{2018}-2\)

Dấu "=" xảy ra khi \(a=\sqrt{2018}\)

Vậy \(M_{min}=2\sqrt{2018}-2\) khi \(a=\sqrt{2018}\)

9 tháng 11 2017

Dự đoán dấu "=" xảy ra khi \(a=b=c=16\Rightarrow M=24\)

Ta cần cm \(M=24\) là GTNN

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(M=\frac{a}{\sqrt{b}-2}+\frac{b}{\sqrt{c}-2}+\frac{c}{\sqrt{a}-2}\)

\(\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-6}\). Tức là cần cm \(\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-6}\ge24\)

\(\Leftrightarrow\frac{t^2}{t-6}\ge24\forall\left(t=\sqrt{a}+\sqrt{b}+\sqrt{c}>6\right)\)

\(\Leftrightarrow t^2\ge24\left(t-6\right)\Leftrightarrow t^2-24t+144\ge0\Leftrightarrow\left(t-12\right)^2\ge0\)*Đúng*

21 tháng 11 2016

Ta có: \(M-1=\frac{1-2a}{a^2+2}-1=\frac{-\left(a^2+2a+1\right)}{a^2+2}=\frac{-\left(a+1\right)^2}{a^2+2}\le0\)

=>\(M\le1\)

Dấu "=" xảy ra khi: a+1=0<=>a=-1

Lại có:  \(2M=\frac{2-4a}{a^2+2}< =>2M+1=\frac{a^2-4a+4}{a^2+2}=\frac{\left(a-2\right)^2}{a^2+2}\ge0\)

\(< =>2M\ge-1< =>M\ge-\frac{1}{2}\)

Dấu "=" xảy ra khi: a-2=0<=>a=2

Vậy Max P=1 khi a=-1

Min P=-1/2 khi a=2

NV
3 tháng 6 2020

\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)

\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(a=b=1\)

NV
24 tháng 9 2019

Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(\left(81-108a\right)\left(2a-a^2\right)\le25\)

\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)

\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))

Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)

Cộng vế với vế:

\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)

\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)

10 tháng 5 2019

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}=\left(\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

\(\ge2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}\ge3+2=5\)

"=" khi a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)

\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)

hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)

Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$

31 tháng 12 2019

Em cảm ơn ak !!!