cho tứ giác ABCD,M và N là trung điểm của AB và CD,MN=(AD+BC):2.CM ABCD là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD và BC, biết MN =(AB + CD)/2. C/M ABCD là hình thang
gọi I là giao điểm của MN và BD
ta có
MN=(AB + DC)/2
=> MI + IN = AB/2 + DC/2
=> MI = AB/2 và IN = DC/2
=> MI và IN là đường tb của tam giác ABD và tam giác BDC
=> MI // AB và IN // DC
vì M,I,N thẳng hàng nên => AB // DC => tứ giác ABCD là hình thang
A B C D M N
Trả lời
Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\) là đường trung bình của hình thang
\(\Rightarrow ABCD\)là hình thang ( đpcm )
Thông cảm nha mọi người
tôi sẽ vẽ lại hình cho nha
N A B C D M
Study well
Ta có: M là TĐ của AD và N là TĐ của BC
=> MN là đường trung bình của hình thang ABCD
=> \(\left\{{}\begin{matrix}MN//AB\\MN=\dfrac{AB+CD}{2}\end{matrix}\right.\)
Ta có: MN // AB => tứ giác ABNM là hình thang
Ta có: AB = ( MN x 2 ) - CD = 20 - 12 = 8 cm
Ta có: Gọi O là gđ của MN và AH
=> AO là đường cao của hình thang ABCD và AO = 1/2 AH => AO = 3 cm
Diện tích hình thang ABMN là:
\(\dfrac{\left(8+10\right).3}{2}=27\) cm vuông
GE≤GM+ME=12CD+12AB=AB+CD2GE≤GM+ME=12CD+12AB=AB+CD2
Dấu "=" xảy ra ⇔⇔ Ba điểm M, G, E thẳng hàng.
⇔⇔ GE // AB và GE // CD ⇔⇔ AB // CD
⇔⇔ Tứ giác ABCD là hình thang.