Tính : \(3^8\times5^8-\left(15^4-1\right)\left(15^4+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^8.5^8-\left(15^4-1\right).\left(15^4+1\right)=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)
[3/7.4/15+1/3.(9^15)]^0.1/3.6^8/12^4
= 1.1/3.(2.3)^8/(3.4)^4
= 1/3.2^8.3^8/3^4.4^4
= 1/3.2^8.3^8/3^4.2^8
= 1/3.3^8/3^4
= 1/3.3^4=27
(dấu . là nhân nha)
3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
4:
D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)
=(4^8-1)(4^8+1)*...*(4^64+1)
=...
=4^128-1
5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)
=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1
=5^256-1+5^256-1
=2*5^256-2
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)
\(A=-1-4=-5\)
\(B=\frac{4}{3}.\frac{15}{7}-16\)
\(B=\frac{20}{7}-16\)
\(B=\frac{-92}{7}\)
\(C=\frac{28}{15}.0,25.3+\left(\frac{8}{15}-\frac{1}{4}\right)\div1\frac{23}{24}\)
\(C=1,4+\frac{17}{60}\div\frac{47}{24}\)
\(C=1,4+\frac{34}{235}\)
\(C=\frac{363}{235}\)
\(A=\frac{-15}{8}+\frac{7}{8}-4\)
\(=-1-4=-5\)
\(B=\left(4-2\frac{2}{3}\right).2\frac{1}{7}-1\frac{3}{5}:\frac{1}{10}\)
\(=\frac{4}{3}.\frac{15}{7}-\frac{8}{5}:\frac{1}{10}\)
\(=\frac{20}{7}-16=\frac{-92}{7}\)
\(C=1\frac{13}{15}.\left(0,5\right)^2.3+\left(\frac{8}{15}-25\%\right):1\frac{23}{24}\)
\(=\frac{28}{15}.\frac{1}{4}.3+\frac{17}{60}:\frac{47}{24}\)
\(=\frac{7}{15}.3+\frac{17}{60}:\frac{47}{24}\)
\(=\frac{7}{5}+\frac{34}{235}=\frac{363}{235}\)
a, `(x-9)^4=(x-9)^7`
`(x-9)^4-(x-9)^7=0`
`(x-9)^4 . [(1-(x-9)^3]=0`
TH1: `(x-9)^4=0`
`x-9=0`
`x=9`
TH2: `1-(x-9)^3=0`
`(x-9)^3=1^3`
`x-9=1`
`x=10`
b, `(3x-15)^10=(3x-15)^15`
`(3x-15)^10 . [1-(3x-15)^5]=0`
TH1: `(3x-15)^10=0`
`3x-15=0`
`x=5`
TH2: `1-(3x-15)^5=0`
`(3x-15)^5=1^5`
`3x-15=1`
`x=16/3` (Loại)
c, `(x-8)^3=(x-8)^6`
`(x-8)^3 .[1-(x-8)^3]=0`
TH1: `(x-8)^3=0`
`x=8`
TH2: `1-(x-8)^3=0`
`x-8=1`
`x=9`
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
\(3^8\times5^8-\left(15^4+1\right)\left(15^4-1\right)\)
\(=15^8-\left[\left(15^4\right)^2-1\right]\)
\(=15^8-15^8+1\)
\(=1\)