\(\frac{1+\sqrt{2}}{1+\sqrt{2}}\) giải giúp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)
1. \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878
2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036
NHA Vũ Hoàng Thiên An ! ! !
K VÀ KB NHA !
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}\)
Biểu thức \(A\) có nghĩa khi \(\hept{\begin{cases}\sqrt{x}+1\ne0;\text{ }x\ge0\\\sqrt{x}-1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{x+\sqrt{x}-2\sqrt{x}+2-2\sqrt{x}-2}{x-1}=\frac{x-3\sqrt{x}}{x-1}\)
Vậy, \(A=\frac{x-3\sqrt{x}}{x-1}\)
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
`A=(sqrtx-1)/(sqrtx+1)-(sqrtx+3)/(sqrtx-2)-(x+5)/(x-sqrtx-2)`
`đk:x>=0,x ne 4`
`A=((sqrtx-1)(sqrtx-2)-(sqrtx+3)(sqrtx+1)-x-5)/(x-sqrtx-2)`
`=(x-3sqrtx+2-x-4sqrtx-3-x-5)/(x-sqrtx-2)`
`=(-x-7sqrtx-6)/(x-sqrtx-2)`
`=(-(sqrtx+1)(sqrtx+6))/((sqrtx+1)(sqrtx-2))`
`=(-(sqrtx+6))/(sqrtx-2)`
cậu nhờ mấy bn giỏi giỏi ý ko mik bảo tra trên google mấy bn lại bảo mik câu ****
\(\frac{1+\sqrt{2}}{1+\sqrt{2}}=1\)