K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Với mọi \(n\inℕ^∗\) ta có:

 \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n-1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Áp dụng đẳng thức trên ta có:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

15 tháng 6 2018

   \(t\text{ổng}qu\text{át}:\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{n^2\left(n-1\right)-\left(n-1\right)^2n}\)

\(=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{\left(n-1\right)n}\)

\(=\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\)

Thay vào A có

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

\(=1-\frac{1}{\sqrt{2017}}\)

9 tháng 12 2019

Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Lần lượt thay k=1;2;...;2018 ta được:

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

...

\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

Cộng vế theo vế ta được:

\(C=1-\frac{1}{\sqrt{2019}}=...\)

9 tháng 12 2019
https://i.imgur.com/rbOpKwh.jpg
31 tháng 7 2018

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{2018}-\sqrt{2019}}\)

\(=\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2019}-\sqrt{2018}}{2019-2018}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}\)

\(=\sqrt{2019}-\sqrt{2}\)

25 tháng 8 2018

đề sai

13 tháng 8 2019

bn có thể tham khảo ở sách vũ hữu binh nha

9 tháng 12 2019

Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) với a+b+c=0

Sau đó thay vào B tính ra

Số không đẹp lắm đâu hiu

10 tháng 12 2019
https://i.imgur.com/BGVzR9S.jpg
AH
Akai Haruma
Giáo viên
7 tháng 8 2021

1.

Đặt biểu thức là $A$

Ta thấy:

$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$

Tương tự với các phân số còn lại và công theo vế thì:

$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$

$=\sqrt{2019}-1$

 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

2.

$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$

$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$

$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$