K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

`5)A=sqrtx+36/(sqrtx-3)`

`A=sqrtx-3+36/(sqrtx-3)+3`

ÁP dụng bđt cosi ta có:

`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`

`=>A>=12+3=15`

Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`

`<=>(sqrtx-3)^2=36`

`<=>sqrtx-3=6`

`<=>sqrtx=9`

`<=>x=81`

Không có Max.

20 tháng 6 2021

\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Theo BĐT Cô Si ta có:

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)

\(A\ge12+3\)

\(A\ge15\)

\(Min_A=15\)

Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)

\(\left(\sqrt{x}-3\right)^2=36\)

\(\sqrt{x}-3=6\)

\(\sqrt{x}=9\)

\(x=81\)

20 tháng 6 2021

Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Áp dụng BDT Co-si, ta có:

\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12

=> A  \(\ge15\)

Dấu "=" xảy ra <=> x = 81

10 tháng 1 2023

lười học thế

 

10 tháng 1 2023

suốt ngày chép mạng

 

2 A

3 D

4 A

5 A

6 B

7 A

8 A

9 A

a: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)

b: \(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)

c: \(=\dfrac{6-7+x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}=\dfrac{1}{3}\)

d: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)

12 tháng 7 2019

#)Giải :

1. Ta xét các trường hợp

TH1 : Nếu |a+b| là số nguyên dương

=> a + b đạt giá trị dương

=> a + b = |a| + |b| (1)

TH2 : Nếu |a+b| là số nguyên âm

=> a + b đạt giá trị âm

=> a + b < |a| + |b| (2)

Từ (1) và (2) => đpcm 

2. Ta xét các trường hợp :

TH1 : Nếu |a-b| là số nguyên dương

=> a - b đạt giá trị dương

=> a - b = |a| - |b| (1)

TH2 : Nếu |a-b| là số nguyên âm

=> a - b đạt giá trị âm

=> a - b > |a| - |b| (2)

Từ (1) và (2) => đpcm

Đúng k nhỉ ???

12 tháng 7 2019

1. Với mọi \(a,b\inℚ\)ta luôn có : \(a\le\left|a\right|\)và \(-a\le\left|a\right|\)\(b\le\left|b\right|\)và \(-b\le\left|b\right|\)

\(\Rightarrow a+b\le\left|a\right|+\left|b\right|\)và \(-a-b\le\left|a\right|+\left|b\right|\)hay \(a+b\ge-\left[\left|a\right|+\left|b\right|\right]\)

Do đó : \(-\left[\left|a\right|+\left|b\right|\right]\le a+b\le\left|a\right|+\left|b\right|\)

Vậy : \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

Dấu " = " xảy ra khi xy \(\ge\)0

2. Tương tự bài 1

a: \(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b: Khi x=4-2căn 3 thì \(Q=\dfrac{\sqrt{3}-1+2}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-4}=\dfrac{-7-5\sqrt{3}}{13}\)

c: Q>1/6

=>Q-1/6>0

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{1}{6}>0\)

=>\(\dfrac{6\sqrt{x}+12-\sqrt{x}+3}{6\left(\sqrt{x}-3\right)}>0\)

=>\(\dfrac{5\sqrt{x}+9}{6\left(\sqrt{x}-3\right)}>0\)

=>căn x-3>0

=>x>9

14 tháng 10 2021

em chịuem thua

14 tháng 10 2021

cái gì đây?

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik

 

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1