K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

K C B A D H

a) Xét tam giác ABD và tam giác HBD có :

\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)

\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )

Chung BD

\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )

\(\Rightarrow AD=DH\left(đpcm\right)\)

b) Xét tam giác DHC vuông tại H có  \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )

Mà  \(AD=DH\)( câu a )

\(\Rightarrow AD< CD\)

c)  \(\widehat{ABC}=180^o-90^o-30^o=60^o\)

Ta có BD là tia phân giác  \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)

Xét tam giác BDC có  \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)

\(\Rightarrow\)tam giác BDC cân tại D

Mà DH là đường cao  \(\left(DH\perp BC\right)\)

\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC

\(\Rightarrow BH=HC\)

Xét tam giác KBH và tam giác KCH có :

\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)

BH = HC

Chung KH

\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)

\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều

\(\Rightarrow\widehat{BKC}=60^o\)

Từ (1)  \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)

\(\Rightarrow\widehat{BKH}=30^o\)

Xét tam giác BDK có  \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)

\(\Rightarrow\Delta BDK\)cân tại D

Mà AD là đường cao  \(\left(AD\perp BK\right)\)

\(\Rightarrow\)AD là trung tuyến tam giác BDK

\(\Rightarrow BA=AK\)

Xét  \(\Delta KBC\)

KH là trung tuyến ( BH = HC )

CA là trung tuyến ( BA = AK )

KH và CA cắt nhau tại D

\(\Rightarrow\)D là trọng tâm tam giác BKC

d) Ta có  \(\frac{KB}{2}=AK\)( do AB = AK )

\(AD+AK>\frac{KB}{2}\)

Mà KC = KB

\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)

Vậy ...

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

Ta có hình vẽ sau: ( tự vẽ hình nha bạn)

a) Xét \(\Delta ABD\)và \(\Delta HBD\):

BD: cạnh chung

\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

=> AD=HD( 2 cạnh tương ứng)

=> đpcm

b)Xét \(\Delta DHC\)vuông tại H có:

DC>HC 

Mà HD=AD ( cm câu a)

=> DC> AD

c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)

Xét \(\Delta ADK\)và \(\Delta HDC:\)

AD=HD( cm câu a)

\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)

\(\widehat{DHK}=\widehat{DHC}=90^o\)

=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)

=> AK=HC ( 2 cạnh t/ứ)

Mà AB=BH( \(\Delta ABD=\Delta HBD\))

=> AB+AK=HC+BH

=> BK=BC

=> \(\Delta BKC\)cân tại B

=> đpcm

2 tháng 5 2020

A B C D H K

a) Xét tam giác ABD và tam giác HBD có :

BD chung

^ABD = ^HBD ( BD là phân giác của ^B )

=> Tam giác ABD = tam giác HBD ( ch - gn )

=> AD = HD ( hai cạnh tương ứng )

=> AB = AH ( _________________ )

b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )

                ^BHD + ^DHC = 1800 ( kề bù )

Mà ^BAD = ^BHD = 900

=> ^DAK = ^DHC = 900

Xét tam giác DAK và tam giác DHC có :

^DAK = ^DHC ( cmt )

DA = DH ( cmt )

^ADK = ^HDC ( đối đỉnh )

=> Tam giác DAK = tam giác DHC ( g.c.g )

=> AD = DC ( hai cạnh tương ứng )

=> AK = HC ( _________________ )

c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )

Ta có : BK = BA + AK

            BC = BH + HC

Mà BA = BH , AK = HC ( cmt )

=> BK = BC

Xét tam giác KBC có BK = BC ( cmt )

=> Tam giác KBC cân tại B ( đpcm )

24 tháng 4 2016

D C H B A

Mình nói tóm tắt thôi nhé!

a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)

b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD

c) Mình chưa nghĩ rabucminh

 

24 tháng 4 2016

Câu c là tính HC nhé bạn!

c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm

BH + HC = BC = 10cm

BH = AB = 6cm

=> HC = 10 - 6 = 4 cm

Chúc bạn học tốt!hihi

a: BC=15cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD