K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

Với n=2k thì (2k+1993^1994)(2k+1994^1993) chia hết cho 2 vì thừa số 2k+1994^1993 có 2k chia hết cho 2, 1994^1993 chia hết cho 2 (Vì 1994 chia hết cho 2)

Với n=2k+1 thì (2k+1993^1994+1)(2k+1+1994^1993) chia hết cho 2 vì thừa số 2k+1993^1994+1 có 1993^1994 lẻ, 1 lẻ nên 1993^1994+1 chẵn => 2k+1993^1994+1 chia hết cho 2.

Từ các điều trên ta có đpcm

28 tháng 7 2015

2n+2+2n+1+2n=2n.(22+2+1)=2n.7

=>  2n+2+ 2n+1 + 2n chia hết cho 7 vs mọi n \(\in\)N

28 tháng 7 2015

\(2^{n+2}+2^{n+1}+2^n=2^n.\left(2^2+2+1\right)=2^n.7\) chia hết cho 7

7 tháng 7 2017

a)

\(\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2-n+2\right)\left(n+2+n-2\right)\)

\(=\left(4\right)\left(2n\right)\)= 8n chia hết cho 8

b)

\(\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7-n+5\right)\left(n+7+n-5\right)=12\left(2n+2\right)\)

= 24(n + 1) chia hết cho 24

22 tháng 5 2019

(n+1)(n+2)(n+3)....2n  ( 1 )

Dễ thấy ( 1 ) đúng với n = 2

giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k

Ta chứng minh BĐT đúng với n = k+1

\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1

Thật vậy, theo giả thiết quy nạp,ta có :

(k+1)(k+2)(k+3)...2k > 2k

\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k

\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1

\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1

Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

16 tháng 7 2015

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

16 tháng 7 2015

th1 nếu n là số lẻ thì suy ra n+3 là số lẻ còn n+6 là số chẵn 

ta có lẻ.chẵn=chẵn mà các số chẵn chia hết cho 2 Suy ra (n+3).(n+6) chia hết cho 2

th2 nếu n là số chẵn suy ra n+3 là số lẻ còn n+6 là số chẵn

ta có lẻ,chẵn=chẵn mà các số chẵn chia hết cho 2. Suy ra (n+3).(n+6) chia hết cho 2

Suy ra (n+3)(n+6) chia hết cho 2

19 tháng 3 2018

th1 nếu n là số lẻ thì suy ra n+3 là số lẻ còn n+6 là số chẵn 
ta có lẻ.chẵn=chẵn mà các số chẵn chia hết cho 2 Suy ra (n+3).(n+6) chia hết cho 2
th2 nếu n là số chẵn suy ra n+3 là số lẻ còn n+6 là số chẵn
ta có lẻ,chẵn=chẵn mà các số chẵn chia hết cho 2. Suy ra (n+3).(n+6) chia hết cho 2
Suy ra (n+3)(n+6) chia hết cho 

:3