2\(\frac{2}{x-1}\)= 1 + \(\frac{2x}{x+2}\)giai dum mk vs nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|\frac{1}{2}x+1|-4=0\)
\(\Rightarrow|\frac{1}{2}x+1|=4\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x+1=4\\\frac{1}{2}x+1=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=-5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy x = 6 hoặc x = -10
_Chúc bạn học tốt_
We have \(3x^2+8x^3+x^4+9-8x^3-3x^2\)
\(=\left(3x^2-3x^2\right)+\left(8x^3-8x^3\right)+\left(x^4-9\right)\)
\(=x^4-9\)
If my answer is right, I hope you k for me =)) =.='
key: \(3x^2+8x^3+x^4+9+\left(-2x\right)^3-3x^2\)
\(=3x^2+8x^3+x^4+9-2x^3-3x^2\)
\(=\left(3x^2-3x^2\right)+\left(8x^3-2x^3\right)+x^4+9\)
\(=4x^3+x^4+9\)
2C = 4x+2/x^2+2
2C + 1 = 4x+2+x^2+2/x^2+2
= x^2+4x+4/x^2+2
= (x+2)^2/x^2+2 > = 0
<=> 2C >= -1
<=> C >= -1/2
Dấu "=" xảy ra <=> x+2=0 <=> x=-2
Vậy Min của C = -1/2 <=> x=-2
2C = 4x+2/x^2+2
2C + 1 = 4x+2+x^2+2/x^2+2
= x^2+4x+4/x^2+2
= (x+2)^2/x^2+2 > = 0
<=> 2C >= -1
<=> C >= -1/2
Dấu "=" xảy ra <=> x+2=0 <=> x=-2
Vậy Min của C = -1/2 <=> x=-2
Tk mk nha
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
\(\Rightarrow\frac{3\left(5x-1\right)}{30}+\frac{5\left(2x+3\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{x}{30}\)
\(\Rightarrow15x-3+10x+15=2x-16-x\)
\(\Rightarrow24x=-28\)
\(\Rightarrow x=-\frac{7}{6}\)
\(2\frac{2}{x-1}=1+\frac{2x}{x+2}\) \(\left(x\ne1;x\ne-2\right)\)
\(\Rightarrow\frac{2\left(x-1\right)+2}{x-1}=\frac{\left(x+2\right)+2x}{x+2}\)\(\Rightarrow2x^2+4x=3x^2+2x-3x+2\)
\(\Rightarrow\frac{2x-2+2}{x-1}=\frac{x+2+2x}{x+2}\)
\(\Rightarrow\frac{2x}{x-1}=\frac{3x+2}{x+2}\)
\(\Rightarrow2x\left(x+2\right)=\left(x-1\right)\left(3x+2\right)\)
\(\Rightarrow2x^2+4x=x\left(3x+2\right)-1\left(3x+2\right)\)
\(\Rightarrow2x^2+4x=x\left(3x+2\right)-1\left(3x+2\right)\)
\(2\frac{2}{x-1}=1+\frac{2x}{x+2}\) ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x\ne-2\end{cases}}\)
=> \(\frac{2\left(x-1\right)+2}{x-1}=\frac{x+2+2x}{x+2}\)
=> \(\frac{2\left(x-1+1\right)}{x-1}=\frac{x+2\left(x+1\right)}{x+2}\)
=> \(\frac{2x}{x-1}=\frac{x+2\left(x+1\right)}{x+2}\)
=> \(2x\left(x+2\right)=x+2\left(x+1\right)\left(x-1\right)\)
=> \(2x^2+4x=x+2\left(x^2-1\right)\)
=> \(2x^2+4x=x+2x^2-2\)
=> \(2x^2+4x-x-2x^2+2=0\)
=> \(3x+2=0\)
=> \(3x=-2\)
=> \(x=-\frac{2}{3}\)