K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 

      x - y - z = 0

=> 

                   x = y + z       ;      y = x - z       ;      z = x - y

Có : 

   \(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

  \(B=\left(\frac{x-z}{x}\right).\left(\frac{y-x}{y}\right).\left(\frac{z+y}{z}\right)\)

Thay các biểu thức trong khung trên và B ta có :

 \(B=\frac{y}{x}.\frac{y-\left(y+z\right)}{y}.\frac{x}{z}\)

=> \(B=\frac{y}{x}.\frac{y-y-z}{y}.\frac{x}{z}=\frac{y.\left(-z\right).x}{x.y.z}=-1\)

Vậy B = -1

nha !!!

10 tháng 6 2018

Ta có: \(x-y-z=0\Rightarrow\hept{\begin{cases}x=z+y\\y=x-z\\-z=y-x\end{cases}}\)

\(B=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

\(\Rightarrow B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(\Rightarrow B=\frac{y.\left(-z\right).x}{x.y.z}=-1\)

Vậy giá trị của biểu thức \(B=-1.\)

21 tháng 12 2016

\(x^3+y^3+z^3=3xyz\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz=0\)

\(\Rightarrow\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Rightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) (do \(x+y+z\ne0\))

\(\Rightarrow\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)=2\cdot2\cdot2=8\)

 

 

25 tháng 12 2016

8

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

27 tháng 1 2016

Cộng vế 2 đẳng thức đầu lại ta được 

(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27

\(B=\left(\frac{x-z}{x}\right).\left(\frac{y-x}{y}\right).\left(\frac{y+z}{z}\right)\)

Từ x-y-z=0 \(\Rightarrow x-z=y\)

\(\Rightarrow y-x=-z\)

\(\Rightarrow y+z=x\)

Thay vào B ta được

\(B=\left(\frac{y}{x}\right).\left(\frac{-z}{y}\right).\left(\frac{x}{z}\right)=-1\)

30 tháng 1 2019

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Rightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)\(\Rightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)\(\Rightarrow\)\(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)

\(\Rightarrow A=0\)

30 tháng 1 2019

Sai đề không

18 tháng 1 2018

Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?

18 tháng 1 2018

3768km