K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 6 2021

Bạn kiểm tra lại đề bài nhé. Vì: \(\sqrt{\frac{84}{81}}>1\)nên \(1-\sqrt{\frac{84}{81}}< 0\)khi đó căn thức thứ hai không xác định.

20 tháng 6 2021

à cả 2 là căn bậc 3 nhé

29 tháng 6 2018

Nửa chu vi HCN: \(\frac{90}{2}=45m\)

Chiều dài HCN: \(45.\frac{3}{5}=27m\)

Chiều rộng HCN:\(45-27=18m\)

\(S=27.18=486m^2\)

29 tháng 6 2018

nửa chu vi miếng đất là:

90 : 2 = 45 (m)

Coi chiều rộng là 2 phần bằng nhau thì chiều dài là 3 phần như thế.

Vậy tổng số phần bằng nhau là:

2 + 3 = 5 (phần)

Chiều dài mảnh đất là:

45 : 5 x 3 = 27 (m)

Chiều rộng mảnh đất là:

45 - 27 = 18 (m)

Diện tích mảnh đất là:

27 x 18 = 486 (m2)

ĐS : 486 m2

Chúc bạn hok tốt nha!@

2 tháng 6 2015

a) \(\sqrt{0,09}-\sqrt{0,64}=\frac{-1}{2}=-0,5\)

b) \(0,1\cdot\sqrt{225}-\sqrt{\frac{1}{4}}=0,1\cdot15-\frac{1}{2}=1\)

c) \(\sqrt{0,36}\cdot\sqrt{\frac{25}{16}+\frac{1}{4}}=\frac{3\sqrt{29}}{20}\)

d) đề baì có sai ko ban?

14 tháng 3 2019

Đặt \(A=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)

\(\Rightarrow A^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)^2\left(1-\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)\left(1-\frac{\sqrt{84}}{9}\right)^2}\)

\(A^3=2+3.\sqrt[3]{-\frac{1}{27}.\left(1+\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{-\frac{1}{27}.\left(1-\frac{\sqrt{84}}{9}\right)}\)

      \(=2-\left(\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)}+\sqrt[.3]{\left(1-\frac{\sqrt{84}}{9}\right)}\right)\)

 \(A^3=2-A\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\Rightarrow A=1\)

14 tháng 3 2019

Đặt \(A=\sqrt[3]{\frac{9+2\sqrt{21}}{9}}+\sqrt[3]{\frac{9-2\sqrt{21}}{9}}\)

\(A^3=\frac{9+2\sqrt{21}+9-2\sqrt{21}}{9}+3\sqrt[3]{\frac{9^2-4\cdot21}{9^2}}A\)

\(A^3-2+A=0\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+A-1=0\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)

\(\Rightarrow A=1\)(ĐPCM)

17 tháng 7 2021

a) \(\sqrt{0,16}+\sqrt{0,04}-\sqrt{0,25}\)

= 0,4 + 0,2 - 0,5 

= 0,1

b) \(\sqrt{85^2-84^2}-\sqrt{26^2-24^2}\)

\(\sqrt{\left(85-84\right)\left(85+84\right)}\) - \(\sqrt{\left(26-24\right)\left(26+24\right)}\)

\(\sqrt{169}\) - \(\sqrt{2.50}\)

= 13 - 10

= 3 

 Chúc bạn học tốt

a) Ta có: \(\sqrt{0.16}+\sqrt{0.04}-\sqrt{0.25}\)

\(=0,4+0,2-0,5\)

=0,1

17 tháng 8 2016

Ta có : \(x=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)

\(\Leftrightarrow x^3=\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)^3\)

\(\Leftrightarrow x^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}+3.\sqrt[3]{1+\frac{\sqrt{84}}{9}}.\sqrt[3]{1-\frac{\sqrt{84}}{9}}\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}^3\right)\)

\(\Leftrightarrow x^3=2+3.\sqrt[3]{1^2-\frac{84}{81}}.x\Leftrightarrow x^3=2-x\)

\(\Leftrightarrow x^3+x-2=0\Leftrightarrow\left(x-1\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x^2+x+2=0\end{array}\right.\)

Vì \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\) nên pt này vô nghiệm.
Vậy x - 1 = 0 => x = 1

Vậy x có giá trị là số nguyên.

28 tháng 6 2023

A=   +  +   +     

   =   +  +   +     

   =   + 2. + 2  +     

   = 3. + 2  +

15 tháng 5 2019

\(a,A=\frac{\sqrt{x}+1}{\sqrt{x}}\)                  ĐKXĐ: x> 0

   Với x = 81 ta có: 

\(A=\frac{\sqrt{81}+1}{\sqrt{81}}=\frac{9+1}{9}=\frac{10}{9}\)

b,

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}-2\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne4\end{cases}}}\)

\(B=\frac{3x}{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\frac{3x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-x+1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{3\sqrt{x}+3}{\sqrt{x}-2}\)