Cho tam giác vuông tại A đường cao AH tren AC lấy điểm S vẽ AT vuông góc BS cm
Góc THS=goc TCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BA = BD (gt)
=> Tam giác BAD cân tại B => BAD = BDA
b. Tam giác HAD vuông tại H có:
HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
Mà BAD = BDA (theo câu a) => HAD = KAD => AD là tia phân giác của HAK
c. Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
HAD = KAD (AD là tia phân giác của HAK)
AD là cạnh chung
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
a: góc CHS=1/2*sđ cung CS=90 độ
=>góc CHB=90 độ
góc CHB=góc CAB=90 độ
=>CHAB nội tiếp
b: ABCH nội tiếp
=>góc ABH=góc ACH
Bài 4:
Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM) (2 góc trong cùng phía)
Mà là góc ngoài của nên
AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
(2 góc so le trong)
Xét và có:
AH = DE (vì AD +DH = DH + HE)
(ch/minh trên)
(cạnh góc vuông - góc nhọn) DF = BH (2 cạnh tương ứng)
Xét và có:
HE = AD (gt)
BH = DF (ch/minh trên)
(2 cạnh góc vuông) (2 góc tương ứng)
BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác: BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)
Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM) (2 góc trong cùng phía)
Mà là góc ngoài của nên
AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
(2 góc so le trong)
Xét và có:
AH = DE (vì AD +DH = DH + HE)
(ch/minh trên)
(cạnh góc vuông - góc nhọn) DF = BH (2 cạnh tương ứng)
Xét và có:
HE = AD (gt)
BH = DF (ch/minh trên)
(2 cạnh góc vuông) (2 góc tương ứng)
BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác: BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)
Ta có :\(\widehat{HCS}\)= \(\widehat{HAB}\)(cùng phụ \(\widehat{HBA}\)) (1)
C/m được tứ giác BATH nội tiếp => \(\widehat{HTB}\)=\(\widehat{HAB}\)(2)
Từ (1) và (2) <=> \(\widehat{HCS}\)=\(\widehat{HTB}\)
=> Tứ giác THCS nội tiếp (góc ngoài tgnt)
=> đpcm