K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Với  \(a\in Z\) 

Ta có:\(P=4a^2+4a\)

 \(\Leftrightarrow P=4a\left(a+1\right)\)

Vì \(\hept{\begin{cases}4⋮4\\\left[a\left(a+1\right)\right]⋮2\end{cases}}\)

Nên: \(P⋮8\)

Vậy với\(a\in Z\) thì \(P=\left(4a^2+4a\right)⋮8\)  (đpcm)

10 tháng 3 2019

TA CÓ \(\left(a-b\right)⋮7\)

\(\Rightarrow3\left(a-b\right)⋮7\)

\(\Rightarrow\left(3a-3b\right)⋮7\)

Mà nếu \(\left(4a+3b\right)⋮7\)

thì \(\left(4a+3b\right)+\left(3a-3b\right)⋮7\)

\(\Rightarrow\left(4a+3b+3a-3b\right)⋮7\)

\(\Rightarrow7a⋮7\left(đpcm\right)\)

Vậy nếu \(\left(a-b\right)⋮7\)thì \(\left(4a+3b\right)⋮7\)

10 tháng 3 2019

Cảm ơn bạn nhiều!

28 tháng 3 2018

tui mới học lớp 5 ở ngheng

31 tháng 3 2023

Ai có lời giải k ạ

29 tháng 6 2017

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

19 tháng 7 2023

Ta có:\(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số nguyên liên tiếp nên có một số chia hết cho 2, một số chia hết cho 3 và một số chia hết cho 5. Mà 3 số này đôi một nguyên tố cùng nhau nên (a-2)(a-1)a(a+1)(a+2) chia hết cho 2.3.5=30 (*)

Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3. Mà (2;3)=1 nên 5(a-1)a(a+1) chia hết cho 2.3.5=30 (**)

Từ (*)và(**) => \(a^5-5\) chia hết cho 30(đpcm)

30 tháng 6 2017

Có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\text{a}\left(a-1\right)\left(a+1\right)\)
Có a(a-1)(a+1)(a-2)(a+2) là 5 số tự nhiên liên tiếp => có 1 số chia hết cho 5, 1 số chia hết cho 3 và 1 số chia hết cho 2 => chia hết cho 30
a(a-1)(a+1) là 3 số tự nhiên liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3 => 5a(a-1)(a+1) chia hết cho 30 
vậy tổng của chúng chia hết cho 30
=> đpcm