K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

\(x^2-2xy-3y^2=3x-y+2\)

\(\Leftrightarrow x^2-2xy-3x-3y^2+y-2=0\)

\(\Leftrightarrow x^2-x\left(2y+3\right)-3y^2+y-2=0\)

\(\Leftrightarrow4x^2-4x\left(2y+3\right)+\left(2y+3\right)^2-\left(2y+3\right)^2-12y^2+4y-8=0\)

\(\Leftrightarrow\left(2x-2y-3\right)^2-4y^2-12y-9-12y^2+4y-8=0\)

\(\Leftrightarrow\left(2x-2y-3\right)^2-16y^2-8y-17=0\)

\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(16y^2+8y+1\right)=16\)

\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(4y+1\right)^2=16\)

\(\Leftrightarrow\left(2x-6y-4\right)\left(2x+2y-2\right)=16\)

\(\Leftrightarrow\left(x-3y-2\right)\left(x+y-2\right)=4\)

Đến đây bn tự giải nha

28 tháng 7 2023

đoạn cuối là \(\Leftrightarrow\left(x-3y-2\right)\left(x+y-1\right)=4\)

18 tháng 8 2023

\(3x^2+3xy-17=7x-2y\)

\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)

\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)

\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)

\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)

\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)

18 tháng 3 2023

\(x^2-3xy+2=y\)

\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)

\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)

Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)

\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)

Lập bảng:

3x+1191-19-1
x60\(\dfrac{-20}{3}\left(l\right)\)\(\dfrac{-2}{3}\left(l\right)\)

Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)

Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)

Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)

 

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

4 tháng 5 2021

Ta có : xy - 4x - 3y = 5

=> xy - 4x - 3y + 12 = 5 + 12

=> x(y - 4) - 3(y - 4) = 17

=> (x - 3)(y - 4) = 17

Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)

Khi đó ta có 17 = 1.17 = (-1).(-17)

Lập bảng xét các trường hợp 

x - 3117-1-17
y - 4171-17-1
x4202-14
y215-133

Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)