Giả sử x=a/b , y=b/m CTR nếu z = a+b/2m ta có x < z <y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
x=a/m=2a/2m y=b/m=2b/2m
x<y nên a<b
=>2a<a+b và =>a+b<2b
=>2a/2m < a+b/2m < 2b/2m
=>x<y<z ( đpcm)
\(\frac{a}{m}<\frac{b}{m}\Rightarrow a\)<b
\(\Rightarrow x=\frac{2a}{2m};y=\frac{2b}{2m}\)
2a<a+b<2b \(\Rightarrow x=\frac{2a}{2m}\)<\(z=\frac{a+b}{2m}\)<\(y=\frac{2b}{2m}\)
=>đpcm
Kudo Shinichi
Ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = ﴾a + b﴿ / 2m
Mà : a < b
Suy ra : a + a < b + a
Hay 2a < a + b
Suy ra x < z ﴾1)
Mà : a < b
Suy ra : a + b < b + b
Hay a + b < 2b
Suy ra z < y ﴾2﴿
ta có : y-x=b/m-a/m=b-a/m=b-a
mà : y>x => y-x>0(là số dương)=>b-a/m>0=>b-a>0
giả thiết đầu tiên : x<z => z-x = a+b/2m-a/m = a+b/2m-2a/2m=b-a/2m>0
=> x<z (1)
giả thiết thứ hai: z<y => y-z = b/m-a+b/2b=2b/2m-a+b/2m=b-a/2m>0
=> z<y (2)
từ (1) và (2) ta suy ra được x<z<y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
đề sai rồi kìa
Câu hỏi của Huỳnh Phạm Quỳnh Như - Toán lớp 7 - Học toán với OnlineMath