1. Cho đường thẳng (đ): va \(y=\frac{-1}{2}x+2\)Parabol (P): \(y=\frac{1}{4}x^2\)trên hệ trục Oxy
a> Vẽ (P) vả (d) đã cho.
b) Goí A,B là giao điểm của (d) và (P). Tìm điểm N trên trục hoành sao cho tam giác NAB cân tại N.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ nhé, dễ rồi !
b.
Vì A,B là 2 giao điểm của đt (d) với (P) => \(^{x_A,x_B}\)là nghiệm của pt hoành độ giao điểm sau:
\(-\frac{1}{2}x+2=\frac{1}{4}x^2\)
<=> \(\frac{1}{4}x^2+\frac{1}{2}x-2=0\)
<=> \(x^2+2x-8=0\)
<=> \(x^2+2x+1-9=0\)
<=> \(\left(x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\)
<=> \(\orbr{\begin{cases}x_A=-4\\x_{B=2}\end{cases}}\)
=> \(\hept{\begin{cases}A\left(-4;4\right)\\B\left(2;1\right)\end{cases}}\)
Điểm N thuộc trục hoành => N(n;0)
Ta có: \(NA=\sqrt{\left(x_A-x_N\right)^2+\left(y_A-y_N\right)^2}\)= \(\sqrt{\left(-4-n\right)^2+4^2}=\sqrt{n^2+8n+32}\)
\(NB=\sqrt{(x_B-x_N)^2+\left(y_B-y_N\right)^2}\)= \(\sqrt{\left(2-n\right)^2+1^2}=\sqrt{n^2-4n+5}\)
Tam giác NAB cân tại N <=> NA =NB <=> \(\sqrt{n^2+8n+32}=\sqrt{n^2-4n+5}\)
<=> \(n^2+8n+32=n^2-4n+5\)
<=> \(n=\frac{-27}{12}=\frac{-9}{4}\)
=> \(N\left(\frac{-9}{4};0\right)\)
a)Hoành độ giao điểm của (P)và (d) là:
\(\frac{1}{2}x^2=x+4\)
\(\Leftrightarrow x^2=2x+8\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)
Thay \(x=-2\)vào (d) ta được:
\(y=-2+4=2\)
Thay \(x=4\)vào (d)ta được:
\(y=4+4=8\)
Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)
b)Mk ko bt làm
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=x+2\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=2^2=4\)
Thay x=-1 vào (P), ta được:
\(y=\left(-1\right)^2=1\)
Vậy: A(2;4) và B(-1;1)
a
b:
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
a/ bạn tự làm
b/ \(\Rightarrow y=0\Rightarrow\dfrac{1}{2}x+2=0\) giải PT tìm hoành độ x
c/ \(\Rightarrow x=0\Rightarrow y=0+2=2\)
d/ \(\Rightarrow\dfrac{1}{2}x+2=-x+2\) Giải PT tìm hoành độ x của C rồi thay vào d1 hoặc d2 để tìm tung độ y của C