Cho x+y= 3 va y>=2 Tim Gia tri nho ngat cua\(X^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x>y=>x-y>0
Có (x2+y2)/(x-y)=(x2-2xy+y2+2xy)/(x-y)=[(x-y)2+2000]/(x-y)=x-y + 2000/x-y
đến đây áp dụng cauchy là xong
Đặt x = 4 - m; y = 4 + m
=> x2 + y2 = (4 - m)2 + (4 + m)2 = 16 - 8m + m2 + 16 + 8m + m2 = 32 + 2m2
Vì m2 >= 0 => 2m2 >= 0
=> 32 + 2m2 >= 32
Dấu bằng xảy ra khi: m2 = 0 => m = 0
Vậy x2 + y2min = 32 <=> x = y = 4
Ta có: \(x+y=4\) \(\Rightarrow\) \(y=4-x\)
Do đó: \(A=x^2+y^2=x^2+\left(4-x\right)^2=x^2+16-8x+x^2=2x^2-8x+16=2\left(x^2-4x+4\right)+8\)
\(A=2\left(x-2\right)^2+8\ge8\) với mọi \(x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) \(x=2\)
\(\Rightarrow\) \(y=2\) (do \(x+y=4\) )
Vậy, \(Min\) \(A=8\) \(\Leftrightarrow\) \(x=y=2\)
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
Ta có: \(x+y=3\)và \(y\ge2\)(1)
\(\Rightarrow x\le1\)(2).
Từ (1) và (2) \(\Rightarrow x^2\ge1\)và \(y^2\ge4\).
\(\Rightarrow x^2+y^2\ge1+4=5\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=1\)và \(y^2=4\)
\(\Rightarrow\)x=1 hoặc x = -1 và y = 2 hoặc y=-2 biết x +y =3 và y \(\ge\)2 (điều kiện bài cho)
\(\Rightarrow x=1\)và \(y=2\).
Vậy Min x\(^2\)+ y\(^2\)= 5 khi x=1 và y=2.
Chúc bn hc tốt ^_^!