K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 2x2 + y2 - 2xy + x + 2 

= x2 - 2xy + y2 + x2 + x + \(\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì : \(\left(x-y\right)^2\ge0\forall x\)

        \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN là : \(\frac{3}{4}\) khi x = \(-\frac{1}{2}\) ; y = \(-\frac{1}{2}\)

17 tháng 7 2015

A=[(X2-2XY+Y2)+2(X-Y)+1]+(Y2-8Y+16)=(X-Y+1)2+(Y-4)2>=0

=>Amin=0 khi y=4;x=3

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

29 tháng 7 2018

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

22 tháng 9 2016

A= (x2-2xy +y2)+(2x-2y)+1+(y2-8y+16)

A= (x-y)2 +2(x-y) +1 +(y-4)2

A= (x-y+1)2 +(y-4)2

Vì (x-y+1)2 +(y-4)2 >= 0 với mọi x,y

Dấu = xảy ra <=> x-y+1=0 và y-4=0

                   <=> x=3 và y=4

19 tháng 2 2018

a, A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(2x2-2x+2)+1

=(x-y)2+2(x-1)2+1

vì (x-y)2 ≥0 ∀x,y

(x-1)2 ≥ 0 ∀x

=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y

=> A ≥1

= > GTNN A = 1 khi

x-1=0

=> x=1

x-y=0

=> 1-y=0

=> y=1

vậy GTNN A =1 khi x=y=1

20 tháng 5 2018

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

20 tháng 5 2018

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1