K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

bạn vào câu hỏi tương tự ý

10 tháng 3 2019

khó thế bạn ơi

15 tháng 1

sos

24 tháng 9 2017

Vì a, b, c có vai trũ như nhau nên giả sử  a   ≤ b   ≤ c  khi đó

 ( Vì a là số nguyên tố )

Với a = 2 ta có

-    Nếu b = 2 thì 4c < 2 + 4c  thoả món với c là nguyên tố bất kỡ

-  Nếu b = 3 thì 6c < 6b + 5c suy ra c < 6 vậy c = 3 hoặc c = 5

Vậy các cạp số (a, b, c) càn Tìm là (2, 2, p) ; (2, 3, 3 ) ; (2, 3, 5 ) và các hoán vị vủa chúng , với p là số nguyên tố .

15 tháng 11 2015

Các bộ ba chữ số nguyên tố liên tiếp có thể là (2;3;5); (3;5;7)

Tính 22 + 3+ 5= 4 + 9 + 25 = 38 là hợp số => Loại

Tính 32 + 52 + 7= 9 + 25 + 49 = 83 là số nguyên tố 

Vậy bộ ba số đó là 3;5; 7

30 tháng 3 2016

abc<ab+bc+ca

->abc/abc<ab/abc+bc/abc+ca/abc

->1<1/a+1/b+1/c

ko mất tính tổng quát gsử a<=b<=c

->1/a>=1/b>=1/c

->1/a+1/b+1/c<=3/a

->3/a>=1

->a<=3 .mà a là snt

->a=2;3

+,a=2 thì1/b+1/c=1/2

mà 1/b+1/c<=2/b

->2/b>=1/2

->b<=4 mà b là snt

->b=2;3;4. bn tự giản từng trường hợp của b mà tìm c nhé

+,b=3 giải tương tự b=2

có j ko hỉu bn nt cho mk nha

30 tháng 3 2016

k đi mình làm cho

9 tháng 6 2015

Gọi 3 số nguyên tố liên tiếp cần tìm là p, q, r.

Ta có p2 + q2 + r2 = A là số nguyên tố.

Giả sử p < q < r

 Do p, q, r là các số nguyên tố nên A = p2 + q2 + r2 > 3 nên

Nếu p, q, r đều không chia hết cho 3 khi đó p2 ; q2 ;r2  khi chia cho 3 dư 1 hoặc dư 2.

=> A chia hết cho hết cho 3 mà A > 3 nên A là hợp số trái với giả thiết (loại)

Vậy p chia hết cho 3, vì  p nguyên tố nên p = 3 \(\Rightarrow\) q = 5 ; r = 7

Khi đó 32 + 52 + 72 = 83 là số nguyên tố

                    Vậy 3 số nguyên tố cần tìm chỉ có 3 ; 5 ; 7 thỏa mãn.

9 tháng 6 2015

Đinh Tuấn Việt nhầm rồi:

Sửa lại: p; q;r là số nguyên tố > 3 => chúng có dạng 3k + 1 hoặc 3k + 2

=> p2; q2; r2 chia cho 3 đều dư 1

=> p2 + q2+  rchia hết cho 3 => A chia hết cho 3

..................... 

8 tháng 7 2015

Gọi 3 số nguyên tố cần tìm là x,y,z ta có:

     Cho x là số bằng 10% so với tổng 3 số cần tìm thì x=(x+y+z).10% = (x+y+z)/10

=> 10x= x+y+z

=> x+y+z là 1 số chẵn

=> 1 trong 3 số là số chẵn

=> Số nguyên tố chẵn duy nhất là 2, vậy 1 trong 3 số x,y,z là 2

10x = x+y+z nên 10x-x=y+z hay 9x=y+z

 Vì y+z là số chẳn nếu y,z khác 2 nên x = 2

=> 18=y+z => {y;z}={5;13};{13;5};{7;11};{11;7}

=> y+z = 1 số chẵn + 1 số lẻ = 1 số lẻ.

=> Không tìm được x,y,z 

3 tháng 3 2020

Bài 2 :

Tham khảo nha bạn !

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

3 tháng 3 2020

Vì a,b,c có vai trò như nhau. Giả sử a<b<c

Khi đó ab+bc+ca =< 3bc

=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)

Với a=2, ta có:

2bc < 2b+2c-bc =< 4c 

=> b<4 => b=2 hoặc b=3

Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì

Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5

Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố

Giả sử  \(2\le c\le b\le a\)   (1)

Từ abc < ab + bc + ca chia 2 vế cho abc ta được :

\(1< \frac{1}{c}+\frac{1}{b}+\frac{1}{a}\)   (2)

Từ (1) ta có :

\(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\le\frac{3}{c}\)  nên   \(1< \frac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)

Thay c = 2 vào (2) ta có :

\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le4\)

Vì b là số nguyên tố nên \(\orbr{\begin{cases}b=2\\b=3\end{cases}}\)

Với \(b=2\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{2}\Rightarrow\frac{1}{a}>0\) đúng với mọi số nguyên tố a 

Với  \(b=3\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{3}\Rightarrow\frac{1}{a}>\frac{1}{6}\Rightarrow a< 6\)

Mà a là số nguyên tố nên \(\orbr{\begin{cases}a=3\\a=5\end{cases}}\)

Vậy ( a ; b ; c ) = ( 5 ; 3 ; 2 ) ; ( 3 ; 3 ; 2 ) ; ( a ; 2 ; 2 ) với a là số nguyên tố bất kì

9 tháng 12 2019

KHông mất tính tổng quát: g/s: \(a\ge b\ge c\)

=> \(ab+bc+ac\le ab+ba+ab=3ab\)

Theo đề bài: \(abc< ab+bc+ac\)

=> \(abc< 3ab\Leftrightarrow c< 3\)

mà c là số nguyên tố => c = 2

=> \(2ab< ab+2b+2a\)

=> \(ab< 2\left(a+b\right)\)mặt khác \(a\ge b\)

=> \(ab< 2\left(a+a\right)\Leftrightarrow ab< 4a\Leftrightarrow b< 4\)

Ta có b là số nguyên tố => b = 2 hoặc b = 3

Với b = 2 => \(4a< 2a+4+2a\)=> 0 < 4 luôn đúng với mọi a

Với b = 3 => \(6a< 3a+6+2a\)=> a < 6 . Vì a là số nguyên tố  lớn hơn  hoặc bằng b =>  a = 3 hoặc a = 5

Vậy có các bộ số : ( a; 2; 2) với a nguyên tố bất kì; ( 3; 3; 2) ; ( 5; 3; 2) Và các hoán vị