K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Câu 1:
 
 
Dễ thấy phương trình có x=2 là 1 nghiệm.
Mặt khác ta có: vế trái luôn nghịch biến do
 
Vậy phương trình có nghiệm duy nhất x=2

Câu 2:
 
Áp dụng bất đẳng thức Côsi ta có:
 
 
Dễ thấy chỉ xảy ra khi  
Mặt khác khi thay x=2 vào vế trái được VT bằng  
Vậy kết luận phương trình đã cho vô nghiệm.

Câu 3:
Tương tự phương pháp như câu 2 ta có:
 
 
Vế phải  
 mà  
Vậy nên chỉ có thể xảy ra khi  
Mặt khác ta có để  
Thay x=0 vào (1) được  (Thoả mãn)
Vậy phương trình đã cho có nghiệm x=0

Câu 4
 
Điều kiện là mẫu khác 0 hay x khác  
Với điều kiện trên ta có:
 
Bạn đặt  ta được phương trình sau
 
Giải phương trình được  , (loại vì t>0)
Vậy cuối cùng giải ra nghiệm của phương trình là:
 và   
3 tháng 3 2016

 √(2x²+8x+6) + √(x²-1) = 2(x+1) TXĐ: x € (-∞;-3] U [1;+∞) U {-1} 
Từ pt => x≥ -1. Kết hợp với TXĐ đc: x ≥1 hoặc x = -1 
Bình phương 2 vế: 
2√[2(x²-1)(x²+4x+3)] = x²-1 
Từ đây suy ra x² ≥ 1, lại bình phương 2 vế tiếp: 
8(x²-1)(x²+4x+3) = x^4 - 2x²+1 
<=> 7x^4 + 32x³ + 18x² -32x -25 = 0 
<=> 7x^4 - 7x² + 32x³ - 32x +25x² - 25 = 0 
<=> 7x²(x²-1) + 32x(x²-1) +25(x²-1) = 0 
<=> (x²-1)(7x²+32x+25) = 0 
<=> (x²-1)(x+1)(7x+25) = 0 
<=> x = ±1 (x = -25/7 loại) 

3 tháng 3 2016

hình như bạn hiểu sai đề rồi. viết lại cho rõ nhé:(8x-6)căn (x-1)=(2+căn (x-2))(x+4 căn(x-2)+3)