K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A =\ dfrac {1} {2.9} + \ dfrac {1} {9.7} + \ dfrac {1} {7.19} + ... + \ dfrac {1} {252.509}91+71+91+.+91

A = 2. (\ dfrac {1} {4.9} + \ dfrac {1} {9.14} + \ dfrac {1} {14.19} + ... + \ dfrac {1} {504.509}91+41+91+.+91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {9} + \ dfrac {1} {9} - \ dfrac {1} {14} + \ dfrac {1} {14} - \ dfrac {1} {19} + ... + \ dfrac {1} {504} - \ dfrac {1} {509}41-91+91-41+41-91+.+41-91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {509}41-91)

A =\ dfrac {2} {5}52(\ dfrac {509} {2036} - \ dfrac {4} {2036}69-64)

A =\ dfrac {2} {5}52.\ dfrac {505} {2036}65

A =\ dfrac {101} {1018}81

12 tháng 8 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Akane Hoshino.

Chúc bạn học tốt!

25 tháng 2 2017

ko hiểu cái quy luật của nó

25 tháng 2 2017

Ta có:\(\frac{1}{2.9}=\frac{1}{2}-\frac{1}{9}\)

\(\frac{1}{9.7}=\frac{1}{9}-\frac{1}{7}\)

\(⋮\)

\(\frac{1}{252.504}=\frac{1}{252}-\frac{1}{504}\)

\(A=\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-...............+\frac{1}{252}-\frac{1}{504}\)

\(A=\frac{1}{2}-\frac{1}{504}\)

\(A=\frac{251}{504}\)

25 tháng 2 2017

\(\frac{101}{1018}\)

A =\ dfrac {1} {2.9} + \ dfrac {1} {9.7} + \ dfrac {1} {7.19} + ... + \ dfrac {1} {252.509}91+71+91+.+91

A = 2. (\ dfrac {1} {4.9} + \ dfrac {1} {9.14} + \ dfrac {1} {14.19} + ... + \ dfrac {1} {504.509}91+41+91+.+91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {9} + \ dfrac {1} {9} - \ dfrac {1} {14} + \ dfrac {1} {14} - \ dfrac {1} {19} + ... + \ dfrac {1} {504} - \ dfrac {1} {509}41-91+91-41+41-91+.+41-0 91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {509}41-0 91)

A =\ dfrac {2} {5}52(\ dfrac {509} {2036} - \ dfrac {4} {2036}69-64)

A =\ dfrac {2} {5}52.\ dfrac {505} {2036}65

A =\ dfrac {101} {1018}81

21 tháng 6 2019

A=7/81

19 tháng 6 2019

Đặt \(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\frac{505}{2036}\)

\(\Leftrightarrow A=\frac{101}{1018}\)

~ Hok tốt ~

19 tháng 6 2019

#)Giải :

\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(A=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\times\frac{505}{2036}\)

\(A=\frac{101}{1018}\)