Tính nhanh :
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2008+2009.2010}{2010.\left(2009+2\right)-2012}\)
\(=\frac{2009.2010+2008}{2010.2009+2010.2-2012}\)
\(=\frac{2008+2009.2010}{2008+2009.2010}=1\)
\(\frac{2011.2010-1}{2009.2011+2010}=\frac{2011.\left(2009+1\right)-1}{2009.2011+2010}\)
\(=\frac{2011.2009+2011-1}{2009.2011+2010}\)
\(=\frac{2011.2009+2010}{2009.2011+2010}\)
\(=1\)
Nhớ k vs kp với mik nhé,mấy man!
(2012.2010+2010.2008).\(\left(1+\frac{1}{2}:1\frac{1}{3}-1\frac{1}{3}\right)\)= (2012.2010+2010.2008).(\(\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)
=(2012.2010+2010.2008).0=0
Đây là mình làm tắt bạn có thể giải chi tiết hơn....Chúc bạn học tốt
\(\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)
\(=\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{2}:\frac{3}{2}-1\frac{1}{3}\right)\)
\(=\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2012\times2010+2010\times2008\right)\times0=0\)
lết quả là :
\(\frac{-1}{2009}\)
ai thấy đúng thì tk nha
\(\frac{2010.125+1000}{126.2010-1010}=\frac{10\left(201.125+100\right)}{10\left(201.126-101\right)}=\frac{201.125-101+201}{2011.126-101}\)
\(=\frac{201.126-101}{201.126-101}=1\)
=2010 x 125 + 2010x 126 + 1000+1010
=2010 x 125 + 2010 x 126 + 2010
=2010 x ( 125 + 126 +1 )
=2010 x 252
=506520
a, \(A=\frac{2012\cdot2011-1}{2010\cdot2012+2011}=\frac{2012\cdot\left(2010+1\right)-1}{2010\cdot2012+\left(2012-1\right)}=\frac{2012\cdot2010+2012-1}{2012\cdot2010+2012-1}=1\)
b, 10,11 + 11,12 + 12,13 + .... + 97,98 + 98,99 + 99,100
= ( 10 + 11 + 12 + .... + 97 + 98 + 99 ) + ( 0,10 + 0,11 + 0,12 + 0,13 + ... + 0,98 + 0,99 )
= { ( 10 + 99 ) . [ ( 99 - 10 ) : 1 + 1 ] ] : 2 } + { ( 0,10 + 0,99 ) . [ ( 0,99 - 0,10 ) : 0,01 + 1 ] : 2 }
= ( 99 . 90 : 2 ) + ( 1,09 . 90 : 2 )
= 4455 + 49,05
= 4504,05
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)
= \(\frac{2010\cdot2011+1000}{\left(2011+1\right)\cdot2010-1010}\)
= \(\frac{2010\cdot2011+1000}{2011\cdot2010+2010-1010}\)
= \(\frac{2010\cdot2011+1000}{2011\cdot2010+1000}\)
= 1
\(\frac{2010.2011+1000}{2012.2010-1010}\)
\(=\frac{2010.2011+2010-1010}{2012.2010-1010}\)
\(=\frac{2010.\left(2011+1\right)-1010}{2012.2010-1010}\)
\(=\frac{2010.2012-1010}{2012.2010-1010}\)
\(=1\)