K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Ta có:

\(16a^8-51a=\left(16a^8-16a^7-4a^6\right)+\left(16a^7-16a^6-4a^5\right)+\left(20a^6-20a^5-5a^4\right)+\left(24a^5-24a^4-6a^3\right)+\left(29a^4-29a^3-\frac{29}{4}a^2\right)+\left(35a^3-35a^2-\frac{35}{4}a\right)+\left(\frac{169}{4}a^2-\frac{169}{4}a-\frac{169}{16}\right)+\frac{169}{16}\)

\(=\frac{169}{16}\)

\(\sqrt{16a^8-51a}=\sqrt{\frac{169}{16}}=3,25>\pi\)

29 tháng 5 2018

\(a=\frac{1-\sqrt{2}}{2}\)

\(\Leftrightarrow1-2a=\sqrt{2}\)

\(\Leftrightarrow4a^2-4a-1=0\)

\(\Rightarrow\sqrt{16a^8-51a}=\sqrt{\left(16a^8-16a^7-4a^6\right)+\left(-16a^7+16a^6+4a^5\right)+...+}\)

Làm nốt

25 tháng 9 2019

bạn cứ mũ 8 lên cho mk

16 tháng 10 2016

phynit giúp e vs

20 tháng 10 2016

Đặt: \(x_1=\sqrt{a^2}\)

\(x_2=\sqrt{a^2+\sqrt{a^2}}\)

\(x_3=\sqrt{a^2+\sqrt{a^2+\sqrt{a^2}}}\)

...

\(x_n=\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\) ( n dấu căn )

Ta có: \(a\ne0\Rightarrow0< x_1< x_2< x_3< ...< x_{n-1}< x_n\)

Từ: \(x_n=\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\Rightarrow x_n^2=a^2+\sqrt{a^2+...+\sqrt{a^2}}\)  (n-1 dấu căn ) \(=a^2+x_{n-1}\) 

\(\Rightarrow x_n^2-a^2=x_{n-1}< x_n\Rightarrow x_n^2-a^2< x_n\Rightarrow x_n^2-x_n-a^2< 0\)

\(\Rightarrow\left(x_n-\frac{1}{2}\right)^2-\frac{1}{4}-a^2< 0\Rightarrow\left(x_n-\frac{1}{2}\right)^2< \frac{1+4a^2}{4}\Rightarrow x_n< \frac{1}{2}+\frac{\sqrt{1+4a^2}}{2}\) (1)

Ta cần chứng minh: \(\frac{1}{2}+\frac{\sqrt{1+4a^2}}{2}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\) (2)

Thật vậy, ta có: \(\left(2\right)\Leftrightarrow\frac{\sqrt{1+4a^2}}{2}< \frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow4\sqrt{1+4a^2}< \sqrt{1+16a^2}+\sqrt{9+16a^2}\)

\(\Leftrightarrow16\left(1+4a^2\right)< 10+32a^2+2\sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow32a^2+6< 2\sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow16a^2+3< \sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow256a^4+96a^2+9< 9+160a^2+256a^4\)

\(\Leftrightarrow-64a^2< 0\) ( luôn đúng với mọi a khác 0)

=> Bất đẳng thức (2) đúng

Từ \(\left(1\right),\left(2\right)\Rightarrow x_n< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow\sqrt{a^2+\sqrt{a^2+...+\sqrt{a}}}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

21 tháng 10 2016

Ngọc bổ sung một cách khác nhé :))

Ta xét vế trái, vì dễ thấy \(\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\) (n dấu căn) \(< \sqrt{a^2+\sqrt{a^2+\sqrt{a^2+...}}}\)(vô hạn dấu căn)

Ta đặt \(\sqrt{a^2+\sqrt{a^2+\sqrt{a^2+...}}}=t,t\ge0\)

\(\Rightarrow t^2=t+a^2\Rightarrow t^2-t-a^2=0\)

Ta đưa phương trình trên về phương trình bậc hai ẩn t , khi đó \(\Delta=1+4a^2>0\Rightarrow t=\frac{1+\sqrt{1+4a^2}}{2}\) (vì \(t\ge0\))

Do vậy ta chỉ cần chứng minh \(\frac{1+\sqrt{1+4a^2}}{2}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow4\sqrt{1+4a^2}< \sqrt{1+16a^2}+\sqrt{9+16a^2}\)

\(\Leftrightarrow16\left(1+4a^2\right)< 32a^2+10+2\sqrt{1+16a^2}.\sqrt{9+16a^2}\)

\(\Leftrightarrow16a^2+3< \sqrt{1+16a^2}.\sqrt{9+16a^2}\)

\(\Leftrightarrow\left(16a^2+3\right)^2< \left(16a^2+1\right)\left(16a^2+9\right)\)

\(\Leftrightarrow16^2a^4+96a^2+9< 16^2a^4+160a^2+9\)

\(\Leftrightarrow0< 64a^2\) (luôn đúng với \(a\ne0\))

Vậy ta có đpcm.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có:

      \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)

b) Ta có:

\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{1}{3}}  =  - \frac{{\sqrt 6 }}{3}\)

Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} =  - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} =  - \frac{{\sqrt 3  + 3\sqrt 2 }}{6}\)

b) Vì \(\pi  < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{9}}  =  - \frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)

Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2  - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)