K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

\(\frac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7\right)^2}\)

\(=\frac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^2}\)

\(=2\cdot5\cdot7^2\)

\(=10\cdot49=490\)

28 tháng 5 2018

\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7\right)^2}\)

\(=\frac{2^3.5^3.7^4}{2^2.5^2.7^2}\)

\(=2.5.7^2\)

\(=\left(2.5\right).7^2\)

\(=10.49\)

\(=490\)

21 tháng 8 2015

1=3/3=4/4=5/5=...

=> 1+1/1*3=3/1*3=1/1

=> 1+1/2*4=4/2*4=1/2

=>...

Bieu thuc se con lai la 1*1/2*1/3*1/4*1/5

Vay A=1/120

16 tháng 9 2023

\(\dfrac{10}{11}:\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\right)\)

\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\)

\(=\dfrac{10}{11}:\dfrac{8}{33}\)

\(=\dfrac{10}{11}\times\dfrac{33}{8}\)

\(=5\times\dfrac{3}{4}\)

\(=\dfrac{15}{4}\)

13 tháng 1 2019

\(a)\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)

\(b)\frac{-11.13^7}{11^5.13^8}=\frac{-1}{11^4.13}\) (Bạn xem thử xem có sai đề không nhé)

\(c)\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3+1\right)}{2^9.3^{10}}=\frac{2.4}{3}=\frac{8}{3}\)

\(d)\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(5.4+9\right)}=\frac{8}{20+9}=\frac{8}{29}\)

13 tháng 1 2019

\(a)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)

\(b)\frac{\left(-11\right)\cdot13^7}{11^5\cdot13^8}=\frac{-1}{11^4\cdot13}=\frac{-1}{14641\cdot13}=\frac{-1}{190333}\)

\(c)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2\cdot2}{3}=\frac{4}{3}\)

30 tháng 4 2019

Bài làm

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)

\(1-\frac{1}{x+2}=\frac{2015}{2016}\)

\(\frac{1}{x+2}=\frac{1}{2016}\)

\(\Rightarrow x+2=2016\)

\(x=2014\)

30 tháng 4 2019

#thanks#

8 tháng 5 2018

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{33}{99}-\frac{32}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)

\(\Rightarrow x+2=99\)

\(\Rightarrow x=99-2\)

\(\Rightarrow x=97\)

Vậy \(x=97\)

8 tháng 5 2018

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{x\cdot\left(x+2\right)}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)

\(\Rightarrow x+2=99\)

\(\Rightarrow x=99-2\)

\(\Rightarrow x=97\)

Vậy x=97

7 tháng 8 2016

\(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{17\times19}\right)\times114-0,2\left(x-1\right)=10\)

\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\right)\right]\times114-0,2x+0,2=10\)

\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{19}\right)\right]\times114+0,2-0,2x=10\)

\(\Rightarrow\frac{8}{57}\times114+0,2-0,2x=10\Rightarrow16+0,2-0,2x=10\)

\(\Rightarrow16,2-0,2x=10\Rightarrow0,2x=16,2-10\Rightarrow0,2x=6,2\Rightarrow x=31\)

8 tháng 8 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{96}\)

\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{96}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{5}{16}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{5}{16}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{16}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{5}{16}\)

\(\frac{1}{2x+3}=\frac{1}{48}\)

=> 2x + 3 = 48

=> 2x = 48 - 3

=> 2x = 45

=> x = 45/2