K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

26 tháng 3 2022

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0) 

<=> \(0=6+b\Leftrightarrow b=-6\)

2, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-1\right)x-m+4=0\)

Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay 

\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)

27 tháng 5 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=\left(2m-1\right)x+8\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-8=0\) (*)

Có \(ac=-8< 0\) => pt luôn có hai nghiệm trái dấu

=> (d) luôn cắt (P) tại hai điểm pb có hoành độ trái dấu hay (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung

Hoành độ gđ của A và B là hai nghiệm của pt (*) mà \(x_1< x_2\Rightarrow x_1< 0< x_2\)

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=-8\end{matrix}\right.\)  (|)

Giả sử \(\dfrac{\left|x_1\right|}{\left|x_2\right|}=4\)

\(\Leftrightarrow\dfrac{-x_1}{x_2}=4\)\(\Leftrightarrow x_1+4x_2=0\)  (||)

Từ (|), (||) có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1+4x_2=0\\x_1x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1-2m}{3}\\x_1=\dfrac{4\left(2m-1\right)}{3}\\x_1x_2=-8\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(1-2m\right)}{3}.\dfrac{4\left(2m-1\right)}{3}=-8\) \(\Leftrightarrow\left(1-2m\right)^2=18\)

\(\Leftrightarrow m=\dfrac{1\pm\sqrt{18}}{2}\)

Vậy...

29 tháng 12 2023

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx-m^2+4\)

=>\(x^2-2mx+m^2-4=0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)

Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)

=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)

=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)

=>\(4m^2-2m^2+8-6m-4=0\)

=>\(2m^2-6m+4=0\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)