K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

a/ \(\Delta ADE\)vuông và \(\Delta ADF\)vuông có:

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh huyền AD chung

=> \(\Delta ADE\)vuông = \(\Delta ADF\)vuông (cạnh huyền - góc nhọn)

=> DE = DF (hai cạnh tương ứng) (đpcm)

b/ \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh AD chung

=> \(\Delta ABD\)\(\Delta ACD\)(c. g. c)

Ta có AB = AC (\(\Delta ABC\)cân tại A)

=> A thuộc đường trung trực của BC

=> AD \(\perp\)BC (đpcm)

c/ Ta có AD là đường phân giác của \(\Delta ABC\)

=> \(\widehat{DAB}=\frac{\widehat{BAC}}{2}=\frac{80^o}{2}=40^o\)(tính chất tia phân giác)

và \(\widehat{EDA}=90^o-\widehat{DAB}\)(\(\Delta ADB\)vuông tại D)

=> \(\widehat{EDA}=90^o-40^o=50^o\)

Ta lại có: \(\widehat{DAB}< \widehat{EDA}\)(vì 40o < 50o)

=> DE < AE (quan hệ giữa góc và cạnh đối diện trong tam giác)

và \(\hept{\begin{cases}DA< AE\\DA< DE\end{cases}}\)(quan hệ giữa đường vuông góc và đường xiên)

=> DA < DE < AE (đpcm)

26 tháng 5 2018

a)Xét tam giác EAD và FAD có

AÊD= góc AFD=90*

AD là cạnh chung

góc EAD=góc FAD(tam giác ABC cân)

=>tam giác ...=...(cạnh huyền-góc nhọn)

=>DE=DF

b)Xét tam giác ABD và ACD có

BA=CA(gt)

BÂD=CÂD(gt)

AD là cạnh chung

=>tam giác ...=...(c-g-c)

=>góc BDA=CDA

mà BDA+CDA=180*

=>BDA=CDA=180*/2=90*

=>AD vuông góc với BC

c) Xét tam giác AED có: AÊD+EÂD+ góc EDA=180*

=>90*+(80*/2)+góc EAD=180*

=>90*+40*+góc EAD=180*

=>góc EAD=180*-(90*+40*)

=>góc EAD=50*

ta có:EÂD<góc ADE<AÊD(40*<50*<90*)

=>ED<AE<AD

Vậy, ED<AE<AD.

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

16 tháng 9 2023

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

26 tháng 4 2016

a) ta có

goc BAD+ goc DAC =90 (2 góc kề phụ)

goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)

goc DAC=goc HAD (AD lả p/g goc  HAC)

==> góc BAD= goc ADB

-> tam giac BAD cân tại B

b) xet tam giac ADH và tam giac ADE ta có

AD= AD ( cạnh chung) 

goc HAD = goc DAC ( AD là p/g goc HAC)

goc AID = góc AIE (=90)

--> tam giac ADH= tam giac ADE (g-c-g)

-< AH= AE ( 2 canh tương ứng)

Xét tam giac AHD và tam giac AED ta có

AD=AD ( cạnh chung)

AH=AE (cmt)

goc DAH= goc DAE ( AD là p/g HAC)

-> tam giac AHD= tam giac AED ( c-g-c)

-> goc AHD= goc AED ( 2 góc tương ứng

mà góc AHD = 90 ( AH vuông góc BC)

nên AED =90

-> DE vuông góc AC

c) Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( dly pi ta go)

152=122+BH2

BH2 =152-122=81

BH=9

ta có BA=BD ( tam giác ABD cân tại B)

          BA=15 cm (gt)

-> BD=15

mà BH+HD=BD ( H thuộc BD)

nên 9+HD=15

HD=15-9=6

Xét tam giác ADH vuông tại H ta có

AD2=AH2+HD2 ( định lý pitago)

AD2=122+62=180

-> AD=\(\sqrt{180}=6\sqrt{5}\)

12 tháng 5 2018

a) Vì BD = BA nên ΔΔBAD cân tại B

=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm

b) Ta có: góc BAD + g DAC = 90o

=> g DAC = 90o - g BAD (1)

Áp dụng tc tam giác vuông ta có:

g HAD + g BDA = 90o

=> g HAD = 90o - g BDA (2)

mà góc BAD = g BDA (câu a)

=> gDAC = g HAD

=> AD là tia pg của g HAC.

c) Áp dụng tc tổng 3 góc trong 1 tg ta có:

g AHD + g HDA + g HAD = 180o

=> 90o + g HDA + g HAD = 180o

=> g HDA + g HAD = 90o (3)

g DAC + g DKA + g ADK = 180o

=> g DAC + 90o + g ADK = 180o

=> g DAC + g ADK = 90o (4)

mà gDAC = g HAD hay gDAK = gHAD

Xét tgHAD và tgKAD có:

g HDA = g ADK (c/m trên)

AD chung

g HAD = g DAK (c/m trên)

=> tgHAD = tgKAD (g.c.g)

=> AH = AK (2 cạnh t/ư)

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

29 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

27 tháng 6 2020

Nhờ vẽ hình cho mình luôn nha