\(\frac{136}{25x^2}-\frac{9}{\left(x+3\right)^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
a)\(dk,x\ne7;x\ne0\)
\(\frac{4x+13}{5x\left(x-7\right)}-\frac{x-48}{5x\left(7-x\right)}=\frac{4x+13}{5x\left(x-7\right)}+\frac{x-48}{5x\left(x-7\right)}=\frac{\left(4x+13\right)+\left(x-48\right)}{5x\left(x-7\right)}\\ \)
\(=\frac{5x-35}{5x\left(x-7\right)}=\frac{5\left(x-7\right)}{5x\left(x-7\right)}=\frac{1}{x}\)
b)
\(\frac{1}{x-5x^2}-\frac{25x-15}{25x^2-1}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{1-\left(5x\right)^2}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)
\(\frac{1+5x}{x\left(1-5x\right)\left(1+5x\right)}+\frac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-15x+5x+1}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}\)
Giải bất phương trình :
3√25x(2x2+9)≥4x+3x
=> = ..........
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
\(\Leftrightarrow-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\) ĐK \(\sqrt{6x^2-12x+7}\ge0\)
Đặt \(t=x^2-2x\left(t\ge0\right)\Leftrightarrow pt:-t+\sqrt{6t+7}=0\Leftrightarrow\sqrt{6t+7}=t\\ 6t+7-t^2=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(tm\right)\\t=-1\left(ktm\right)\end{array}\right.\)
Với \(t=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x=1\pm2\sqrt{2}\left(tm\right)\)
Vậy S={\(1\pm2\sqrt{2}\)}
\(c,\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow(x+1)(x+1)=2.8\)
\(\Rightarrow(x+1)^2=16\)
\(\Rightarrow(x+1)^2=4^2\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
\(a,x-(\frac{50x}{100}+\frac{25x}{200})=11\frac{1}{4}\)
\(\Rightarrow x-\frac{50x+25x}{100}=\frac{45}{4}\)
\(\Rightarrow\frac{100x}{100}-\frac{75x}{100}=\frac{45}{4}\)
\(\Rightarrow\frac{100x-75x}{100}=\frac{1125}{100}\)
\(\Rightarrow25x=1125\)
\(\Rightarrow x=45\)